1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6. В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED. ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED). 2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE. ∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам. 3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC EF/10 = 6/13 ⇒ EF = 60/13 4) Пусть h - высота треугольника АВС, опущенная на боковую сторону. Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр 13h/2 = √(18 · 5 · 5 · 8) 13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60 h =120/13 5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований. Sade/Sdcf = DE/DF DF = AC = 10 как противолежащие стороны параллелограмма, DE = DF - EF = 10 - 60/13 = 70/13 Sade/Sdcf = (70/13) / 10 = 7/13
Georgievna
05.12.2022
Если а и b - стороны прямоугольника, то S = ab P = 2(a + b)
1. Дано: a = 19b, S = 76 см² Найти: Р Решение: S = ab 76 = 19b · b 19b² = 76 b² = 4 b = 2 см a = 2 · 19 = 38 см P = 2(a + b) = 2·(2 + 38) = 2 · 40 = 80 см
2. Дано: a = b + 4, P = 44 см Найти: S Решение: P = 2(a+ b) 2·(b + 4 + b) = 44 2b + 4 = 22 2b = 18 b = 9 см а = 9 + 4 = 13 см S = ab = 9 · 13 = 117 см²
3. Дано: a : b = 5 : 2, P = 56 см Найти: S Решение: a = 5b/2 P = 2(a + b) 2(5b/2 + b) = 56 7b/2 = 28 b = 28 · 2/7 = 8 см а = 5 · 8 /2 = 20 см S = ab = 8 · 20 = 160 см²
4. Дано: a : b = 7 : 2, S = 56 см² Найти: Р Решение: a = 7b/2 S = ab 7b/2 · b = 56 7b²/2 = 56 b² = 56 · 2/7 b² = 16 b = 4 см а = 7 · 4 / 2 = 14 см Р = 2(a + b) = 2(4 + 14) = 36 см
1) 12
2)20
3)17
6)364
Объяснение:
1
По т.Пифагора OB=12
OB⊥AB тк радиус и касательная
15^2=x^2+9^2 x^2=15^2-9^2
2
D=25
(24\2)^2+16^2=20
3
17°
6
S =a^2=(r*2)^2=4r^2=4*81=364