Проведем МN||АВ..
Четырехугольник КВNM - параллелограмм по построению =>
MN=ВК
Рассмотрим треугольники АКМ и СNМ
В равнобедренном треугольнике АВС углы при основании АС равны. =>
∠ВАМ=∠ВСМ
∠АКМ=∠СNМ=∠АВС - соответственные при параллельных прямых и секущей.
Если в треугольниках два угла равны, то равны е третьи углы. => ∠КАМ=∠NMC
ΔАКМ = ΔСNM по второму признаку равенства треугольников. Сходственные элементы равных треугольников равны. =>
АМ=СМ, ч.т.д.
————
Или:
КМ||ВС по условию,, ⇒∠КМА=∠ВСМ - соответственные при параллельных прямых КМ и ВС и секущей АС.
Δ АВС равнобедренный ⇒ ∠ВАС=∠ВСА, следовательно, в ∆ АКМ углы при М и А равны, ∆ АКМ - равнобедренный. КА=КМ=ВК
КМ параллельна ВС ⇒ КМ - средняя линия ∆ АВС и М - середина АС. Отсюда следует равенство АМ=МС.
Поделитесь своими знаниями, ответьте на вопрос:
Точка віддалена від кожної вершини рівнобедреного трикутника на 65 см. Знайдіть відстань від даної точки до площини трикутника, якщо його основа і бічна сторона трикутника відповідно дорівнює 48 см і 40 см.
Треугольник с прямым углом - это прямоугольный треугольник.
Так как меньшие стороны "прилегают" к прямому углу, то эти стороны - катеты.
Так как катеты имеют длины 6 см и 8 см, то также такой треугольник - египетский (треугольник с соотношением сторон, равным 3:4:5). Следовательно, гипотенуза равна 10 см (можно также проверить через теорему Пифагора).
Высота, проведённая к большей стороне - высота, проведённая к гипотенузе (так как гипотенуза - самая большая сторона в прямоугольном треугольнике).
Высота, проведённая к гипотенузе равна произведению катетов, делённому на гипотенузу.
То есть -
h = 4,8 см.
ответ: 4,8 см.