Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение:
30 см²
Объяснение:
Так как в основание прямоугольник, то углы там равны все 90°
PB=5
PC=13
Если рассмотреть треугольник PBC, угол B там прямой, дальше по теореме Пифагора находим BC. ВС получилось 12
Если дальше рассмотреть треугольник АРВ там угол А=90; угол В=60°
Следовательно угол Р=30°. Далее по теореме "в прямоугольном треугольнике катет, противолежащий углу 30°, равен половине гипотенузы", в нашем случае катет АВ противолежит углу 30°, гипотенузой служит РВ, следовательно, АВ= 5:2=2,5.
Далее ищем площадь основания, в основании прямоугольник, площадь прямоугольника равна a×b. 12×2,5=30 см²
надеюсь, что объяснил доходчиво
Поделитесь своими знаниями, ответьте на вопрос:
может ли синус острого угла прямоугольного треугольника быть равным а)0, 98 б)√2 в)√5-2?
ответ:
Объяснение:
б