Как известно, медианами треугольника называются отрезки, соединяющие его вершины с серединами противоположных сторон. Все три медианы пересекаются в одной точке и делятся ею в отношении 1:2.
Находим стороны:
BC1^2=10^2+6^2=136=> BC1=√136 ≈11.66=> BA≈2*11.66≈23.32 см
BC^2=10^2+12^2=244=> BC=√244 ≈15.62 см
B1C^2=5^2+12^2=169=> B1C=√169 =13=> AC=2*13=26 см
Находим периметр:
P≈23.32+15.62+26≈64.94 см
2) можно использовать и другой Если две медианы перпендикулярны, то сумма квадратов сторон, на которые они опущены, в 5 раз больше квадрата третьей стороны.
Поделитесь своими знаниями, ответьте на вопрос:
До ть будь ласка До ть будь ласка
Соединим точки А, С, В, Е. Получили четырёхугольник, диагонали которого делятся точкой пересечения пополам. Если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм. ЕС и АВ - диагонали параллелограмма АСВЕ. Уг. ОАС = уг. ОВЕ как внутренние накрест лежащие при параллельных прямых АС и ВЕ и секущей АВ. Тр-к АОК = тр-ку ВОМ (АО = ОВ, АК = МВ, Уг. ОАС = уг. ОВЕ). В равных тр-ках оставшиеся стороны равны, т.е. ОК = ОВ, что и требовалось доказать.