Задача решается проще, если вспомнить, что медианы в точке пересечения (т. е. все три медианы в любом треугольнике пересекаются внутри него строго в одной точке - это центр тяжести треугольника). Так вот эти медианы делятся в точке пересечения в соотношении 2 к 1, считая от вершины. Значит ВО=15*2/3=30/3=10 см, СО=18*2/3=6*2=12 см.
ОВ1=15/3=5 см, ОС1=18/3=6 см. Теперь нужно вспомнить теорему Пифагора. Треугольник ВОС - прямоугольный, значит ВС - гипотенуза.
Треугольник ВОС1 - тоже прямоугольный, так как угол С1OB - прямой. Доказывается так.
- как развернутый угол.
По теореме Пифагора из треугольника находим гипотенузу ВС1.
Заметим, что BC1 - половина АВ по определению медианы СС1.
Треугольник B1OC - прямоугольный, так как угол B1OC - прямой, как вертикальный к углу С1OB. Та же теорема Пифагора, чтобы вычислить гипотенузу В1С.
B1C=13 см.
Заметим также, что В1С - половина АС. Значит АС=26 см.
Вычислим периметр АВ.
Поделитесь своими знаниями, ответьте на вопрос:
Ромб ABCD перегнули за його більшою діагоналлю BD так, що площини ABD і CBD виявилися перпендикулярними, а відстань між точками A і C стала дорівнювати 4√2 см. Знайдіть довжину сторона ромба, якщо тупий кут ромба дорівнює 120°.
Ромб ABCD перегнули по его большей диагональю BD так, что плоскости ABD и CBD оказались перпендикулярными, а расстояние между точками A и C стала равна 4√2 см. Найдите длину сторона ромба, если тупой угол ромба равен 120°
Объяснение:
Пусть точка пересечения диагоналей О. По свойству диагоналей ромба АО=ОС и ∠ВСО=∠DСО=120°:2=60°
1)Т.к. плоскости ABD и CBD оказались перпендикулярными , то ∠АОС=90°
ΔАОС-прямоугольный , равнобедренный , АО=ОС=х ,АС=4√2 см.
По т. Пифагора х²+х²=(4√2)² , 2х²=16*2 ,х=4 , АО=ОС=4 см.
2) ΔВОС -прямоугольный (диагонали ромба взаимно-перпендикулярны). ∠ОВС=90°-60°=30°. По свойству угла в 30° , ВС=8см. Сторона ромба 8 см.