Угол АОВ центральный (смотри рисунок). Его градусная мера равна градусной мере дуги, на которую он опирается.
Малая дуга АВ равна 15°. Длина же ее равна 48.
Решим задачу, используя отношение.
Во сколько раз градусная мера большой дуги АВ больше градусной меры малой дуги АВ, во столько же раз длина большой дуги АВ больше длины малой дуги АВ.
Градусная мера всей окружности 360°.
360°–15° = 345° – градусная мера большой дуги АВ.
345°:15° = 23.
В 23 раза градусная мера большой дуги АВ больше градусной меры малой дуги АВ.
48*23 = 1104 – длина большой дуги АВ.
ответ: 1104.
1.
Да,т.к. сумма углов этого 4-угольника равняется 360 градусам
2.
по формуле (n-2)*180 найдем сумму углов (8-2)*180=6*180=1080 градусов
один угол равняется 1080/n=1080/8=135 градусов
3.
d=n*(n-3)/2=9*(9-3)/2=9*6/2=27
ответ:27 диагоналей
4.
P=48 см
Пусть одна сторона x ,тогда другая x-4
Составим уравнение x+x+x-4+x-4=48
4x-8=48
4x=48+8
4x=56
x=14
ответ:14см
5.
Сумма углов параллелограмма прилежащих к одной стороне равняется 180 градусам,пусть один угол 2x,тогда другой угол 3x,составим уравнение
2x+3x=180
5x=180
x=36
тогда углы параллелограмма 2*36=72 и 3*36=108
ответ:72,108,72,108.
6.
∠BCO=∠OCD,т.к. диагональ AC делит ∠BCD по полам
Треугольник OCD прямоугольный,тогда ∠OCD=180-(90+63)=180-153=27
ответ:27 градусов
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
В равнобедренном треугольнике с основанием 2 и боковой стороной 5, найдите периметр ортотреугольника.
6.6
Объяснение:
Дан треугольник АВС. АВ=ВС=5. АС=2.
Проведены высоты СК и AL . Проведем также высоту ВН.
Найти периметр KLH.
АН=АС:2=1
По т Пифагора найдем ВН.
ВН= sqrt(AB²-AH²)=sqrt(25-1)=sqrt(24)
cos(ABH)=cos(B/2)=BH/AB= sqrt(24)/5
sin(B/2)=AH/AB=1/5
cos(B)=(cos(B/2))²-(sin(B/2))²=24/25-1/25=23/25
ΔCKB: KB/CB=cos(B)
KB=CB*cos(B)=5*23/25=23/5
КВ=LB, так как КB=BC/cos(B) и LB=AB/cos(B)) и АВ=АС
=>Δ BKL- равнобедренный => ∡BKL=∡BLK
В треугольниках АВС и KBL угол В - общий.
=> ∡BKL=∡BAC=∡BLK=∡BCA=(180-∡B)/2
=> треугольники KBL и АВС подобны по 2-м углам
=> KB/AB=KL/AC
KL=23/25*2=46/25
Теперь из треугольника КНВ по т косинусов находим КН.
КН²=КВ²+НВ²-2*КВ*НВ*cos(B/2)
KH²=529/25+24-2*23*sqrt(24)*sqrt(24)/5/5
KH²=1129/25+46*24/5= (1129-1104)/25=1
KH=1
P(KLH)=KH+HL+KL=1+1+23/5=6.6