Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Рассмотрим треугольник АВD и
BCD
1.Так ка прилежащие к основанию углы данного равнобедренного треугольника равны то угол А равняется углу С.
2. Так как проведена биссектриса, то угол АВD равен углу СВD.
3. Стороны АВ = СВ у треугольников АВD и СВD равны, так как данный треугольник ABC -
Равнобедренный (равносторонний).
по второму признаку равенства треугольников треугольник АВD и CBD равны. Значит равны все соответствующие элементы в том числе стороны AD = CD. А это означает что отрезок ВD является медианой данного треугольника и делит сторону AC пополам. АD = 18 см.
Поделитесь своими знаниями, ответьте на вопрос:
геометрия с подробностями плзззз 4 и 5 ребята
1-60°
2-70°
Объяснение:
Угол сав=180-150=30°(как смедные углы)угол асв равен 90° также как смежные углыпо теореме о сумме углов прямоуг.треуг уг 1=90-30=60°Номер 5
уг асв равен 90° и уг скв( по теореме о сумме смежных углов)уг ксв равен 90°-70°=20° по теореме о сумме углов прямоуг треугольникауг 1 равен 90-20=70° (по рисунку)