Busyashaa
?>

Дано: ABCD — параллелограмм; AB : BC = 4 : 5 см; PABCD = 10, 8 см.  Найти: AB; BC, CD, AD

Геометрия

Ответы

NikonA83
Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
novocherkutino7
1) Находим углы по теореме косинусов и площадь по теореме Герона:
a      b      c       p       2p            S
4      8     5      8.5    17         8.18153                 
cos A= (АВ²+АС²-ВС²) / (2*АВ*АС)
cos A = 0.9125
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС)
 cos B = -0.575         
cos C= (АC²+ВС²-АD²) / (2*АC*ВС)
cos С = 0.859375
Аrad = 0.421442    Brad = 2.1834          Сrad = 0.53675
Аgr = 24.14685      Bgr = 125.0996        Сgr = 30.75352.

2) Длины высот:
АА₂ = 2S / BС   = 4.090767 
BB₂ = 2S  / АС = 2.04538
CC₂ = 2S / ВА = 3.272614. 

3) Длины медиан:
Медиана, соединяющая вершину  треугольника А с серединой стороны а равна ma= \frac{1}{2} \sqrt{2b^2+2c^2-a^2}
 a     b      c
4     8       5
ма                  мв                     мс
6.364         2.12132           5.80948

4) Длины биссектрис:
Биссектриса угла А выражается:
L_c= \frac{2 \sqrt{abp(p-c)} }{a+b}
a       b       c
4      8        5
     βa               βb                 βc  
6.0177       2.04879        5.14242.

Деление сторон биссектрисами:
                a                                    b                               c
      ВК             КС                АЕ        ЕС               АМ           МВ
1.53847    2.46154       4.4444     3.5556       3.333      1.6667.
 Деление биссктрис точкой пересечения
                  βa                           βb                           βc  
     АО              ОК           ВО        ОЕ           СО             ОМ
4.601799 1.41593 1.08465    0.96413   3.62994     1.512475
Отношение отрезков биссектрис от точки пересечения:
АО/ОК                 ВО/ОЕ              СО/ОМ
3.25                      1.125                    2.4

5)  Радиус вписанной в треугольник окружности равен:
r= \sqrt{ \frac{(p-a)(p-b)(p-c)}{p} }
r = 0.9625334.

Расстояние от угла до точки касания окружности:
АК=АМ         BК=BЕ           CМ=CЕ
    4.5                0.5                   3.5

6)  Радиус описанной окружности треугольника, (R):
R= \frac{abc}{4 \sqrt{p(p-a)(p-b)(p-c)} }
R = 4.889058651.
Решите треугольник авс если: ав=5м,ас=8м,вс=4м

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано: ABCD — параллелограмм; AB : BC = 4 : 5 см; PABCD = 10, 8 см.  Найти: AB; BC, CD, AD
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Иванов1813
M19026789436
Аверьянова
kovalenko262
НиколаевнаФ
akarabut343
bk4552018345
Marina658
Rinatum1978
Владимир1524
stic1995
Karpova
mzubenko6
dvbbdv4
Shago