ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))
Поделитесь своими знаниями, ответьте на вопрос:
Известно, что на стороне КМ треугольника KLM отмечены точки NuR так, что KN = RM, причём, NL = LR. Докажи, что треугольник KLM равнобедренный. L KLH M M N R
ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))