filantropagv4
?>

Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции, если ∠AOD=100°, ∠BOC=80° и точка О лежит вне трапеции.

Геометрия

Ответы

lukanaft

Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции,если ∠AOD=100°,∠BOC=80° и точка О лежит вне трапеции.

Объяснение:

Вписанная в окружность трапеция является равнобедренной.

Значит АВ=CD  стягивают равные дуги → ∪AB=∪CD

∠BOC=80° -центральный → ∪ВС=80°

∠AOD=100°--центральный → ∪АВD=100° ⇒ ∪AB=∪CD=\frac{100-80}{2} =10°.

∠BAD вписанный и опирается на дугу ∪BCD=∪BC+∪CD=80°+10°=90°.

∠BAD=1/2*90°=45°. Значит ∠СDA=45° и ∠СВA=45° (углы при основании равны )

Сумма углов 4-х угольника 360°. Поэтому ∠АВС=∠ВСD=\frac{360-2*45}{2} =135°


Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции,если ∠AOD=100°,
Ramon22081983
Через прямую можно провести бесконечное множество плоскостей, это апиори. Если точка "а" не принадлежит прямой, то через нее и прямую можно провести только одну плоскость, так как прямая - это линия проведенная через 2 точки (не имеет значения в какой части прямой они находятся) а точка "а", по сути является третьей точкой опоры, а через 3 точки опоры можно провести только одну плоскость. Отсюда и вытекает, что поместив точку "а" на прямую, мы сможем провести через неё бесконечное множество плоскостей, так как она станет частью этой прямой и наоборот.
ntyremsk1
Пусть в прямоугольный треугольник ABC вписан квадрат CDEF (см. рисунок). Здесь AC=a, BC=b.
Заметим, что диагональ CE квадрата является также биссектрисой исходного треугольника. Пусть CE=d, тогда CD=d√2/2 - сторона квадрата меньше диагонали в √2 раз. Периметр квадрата равен (d√2/2)*4=2√2d, а площадь равна (d√2/2)²=d²/2. Таким образом, чтобы найти периметр и площадь квадрата, достаточно выразить биссектрису прямого угла d через a и b.

Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=ab/2. Теперь воспользуемся другой формулой площади - S=1/2*a*b*sin(C), где a,b - соседние стороны треугольника, а sin(C) - угол между ними. Тогда S(ACE)=1/2*AC*CE*sin(45), S(BCE)=1/2*CE*BC*sin(45) (углы ACE и BCE равны 45 градусам). Так как S(ACE)+S(BCE)=S(ABC), мы можем записать уравнение с одним неизвестным CE:
1/2*AC*CE*sin(45)+1/2*CE*BC*sin(45)=ab/2
AC*CE*sin(45)+CE*BC*sin(45)=ab
CE(AC+BC)=ab/sin(45)
CE=ab/(a+b)sin(45)
Таким образом, d=ab/(a+b)sin(45). Получаем, что периметр квадрата равен 2√2d=2√2ab/(a+b)sin(45)=4ab/(a+b), а площадь равна d²/2=(ab/(a+b)sin(45))²*1/2=a²b²/(a+b)².
Впрямоугольный треугольник с катетами a и b вписан квадрат имеющий с треугольником общий прямой угол

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции, если ∠AOD=100°, ∠BOC=80° и точка О лежит вне трапеции.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

izykova22
dariamay1996
Джамал1009
Shitikov-M.A.1307
Nikolaevich
sveremeev816
akopsiroyan
znaberd786
autofilters27
marysya60
info2
dmitrijku
Эдгеева219
ovalenceva77
inna-zub