Все эти треугольники имеют одну и ту же окружность Эйлера, а значит, у них одинаковые радиусы описанных окружностей. Раз равны и радиусы вписанных, то равны (по формуле Эйлера) и расстояния от центров вписанной и описанной окружностей для каждого треугольника. То есть эти треугольники AHB, BHC, CHA удовлетворяют теореме Понселе для заданной пары двух окружностей (одна описанная и одна вписанная).
То есть есть фиксированная пара вложенных окружностей, в которую можно поместить каждый из этих треугольников так, что большая окружность будет описанной, а меньшая - вписанной.
Для теоремы Понселе для треугольника легко доказать что, если у двух треугольников с ОБЩИМИ вписанной и описанной окружностями есть одинаковые стороны, то они равны (с точностью до симметрии).
(Если бы это было не так, то из леммы трезубца следовало бы, что центр вписанной окружности совпадает с центром описанной. )
Поэтому все три треугольника AHB, BHC, CHA равны между собой.
Я не очень боюсь выкладывать идею решения - по двум причинам. Во-первых, этот пост легко можно признать нарушением правил и удалить. Во-вторых, сама задача должна быть удалена согласно правилам сервиса.
Так что эта публикация не нарушает моего решения не выкладывать ответы на этом сервисе (до возврата к правилам 2012 года, когда я тут начинал что-то решать).
Анна1169
31.08.2020
Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник треугольник ABC, угол С равен 90 градусов, cos b=3/4, bc =8 см Найти гипотенузу AB
Все эти треугольники имеют одну и ту же окружность Эйлера, а значит, у них одинаковые радиусы описанных окружностей. Раз равны и радиусы вписанных, то равны (по формуле Эйлера) и расстояния от центров вписанной и описанной окружностей для каждого треугольника. То есть эти треугольники AHB, BHC, CHA удовлетворяют теореме Понселе для заданной пары двух окружностей (одна описанная и одна вписанная).
То есть есть фиксированная пара вложенных окружностей, в которую можно поместить каждый из этих треугольников так, что большая окружность будет описанной, а меньшая - вписанной.
Для теоремы Понселе для треугольника легко доказать что, если у двух треугольников с ОБЩИМИ вписанной и описанной окружностями есть одинаковые стороны, то они равны (с точностью до симметрии).
(Если бы это было не так, то из леммы трезубца следовало бы, что центр вписанной окружности совпадает с центром описанной. )
Поэтому все три треугольника AHB, BHC, CHA равны между собой.
Я не очень боюсь выкладывать идею решения - по двум причинам. Во-первых, этот пост легко можно признать нарушением правил и удалить. Во-вторых, сама задача должна быть удалена согласно правилам сервиса.
Так что эта публикация не нарушает моего решения не выкладывать ответы на этом сервисе (до возврата к правилам 2012 года, когда я тут начинал что-то решать).