Целое число, до запятой. Если целые числа не одинаковы, то можно сравнивать, не обращая внимания на число после запятой.
А если целые числа одинаковы, то нужно сравнивать по числам после запятой.
Например в примере А 5,6 меньше чем 6,55. Потому что 5<6.
И так со всеми.
larisau41
01.06.2023
1)5.6‹6.55
2)2.7=2.7
3)1.2‹9.1
kep92
01.06.2023
Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются. В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11 Биссектрисы ВХ и CY делят угол на равные углы 45° Рассмотрим ΔХАВ и ΔYCД: ∠АВХ=∠ДCY = 45° (по док. выше) АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее) Из этого всего мы доказали, что ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними) Из этого доказательства мы выяснили, что АХ=ДY = 6 Но вся сторона АД = 11, получается, что две биссектрисы пересекаются и расстояние между XY 1 см(или в чем там измеряется)
Я здесь что-то много написал, но ты разберись и сам напиши попонятнее Но я старалась )
сергей1246
01.06.2023
В треугольнике: катеты а и b, гипотенуза с, прямой угол С, R - радиус описанной окружности, r- радиус вписанной окружности. Начнём с описанной окружности. Поскольку угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r. Тогда отрезки катетов, прилегающих к вершинам острых углов, равны (а - r) и (b - r). Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r). Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r. Но ранее мы получили, что с = 2R Тогда 2R = a + b - 2r 2R + 2r = a + b R + r = 0.5(a + b) что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сравните числа: а)5, 6 6, 55 б)2, 7 2, 7 в) 1, 2 9, 1 ответе С решением
а)5,6<6,55
б)2,7=2,7
в)1,2<9,1
Объяснение:
Целое число, до запятой. Если целые числа не одинаковы, то можно сравнивать, не обращая внимания на число после запятой.
А если целые числа одинаковы, то нужно сравнивать по числам после запятой.
Например в примере А 5,6 меньше чем 6,55. Потому что 5<6.
И так со всеми.