1) Проекция О вершины верхнего основания - центр нижнего и является центром описанной около нижнего основания окружности.⇒
Отрезок А1О – высота призмы.
АО - катет прямоугольного ∆ АОА1.
АО=А1О:tg45°=4
АО - радиус R описанной окружности
R=a/√3⇒
a=R•√3=4√3
V(призмы)=S (ABC)•A1O
S(ABC)=(4√3)²•√3/4=12√3
V=12√3•4=48√3 (ед. площади)
——————————Из вершины D возведем отрезок DM⊥CC1. Из т.M перпендикулярно к CC1 проведем луч до пересечения с ВВ1 в точке К
Угол DMK- данный и равен 60°.
DM перпендикулярна противоположным сторонам грани ВВ1С1С и является высотой параллелограмма DD1С1С. ⇒
DМ=Ѕ(DD1С1С): ВВ1
DМ=30:5=6 см
Аналогично КM=Ѕ(ВВ1С1С):СС1=20:5=4 см
"Отрежем" от исходной наклонной призмы треугольную призму КМСВ и параллельным переносом установим ее на верхнее основание наклонной призмы. Вследствие этого получим прямую призму АDMKK1M1D1A1. объём которой равен объёму исходной.
V=АА1•S(ADMK)
S(ADMK)=KM•DM•sin60°=4•6•√3/2=12√3
V=5•12√3=60√3
Поделитесь своими знаниями, ответьте на вопрос:
Решите сначала второй вариант, а потом первый
Сумма всех углов параллелограмма равна 360°.
АВСД - параллелограмм, ∠А=∠С, ∠В=∠Д
∠А+∠В+∠С+∠Д=360°
Рассмотрим условие
а)сумма двух его противоположных углов равна 94 градуса.
То есть ∠А+∠С=94°
а поскольку ∠А=∠С, значит ∠А=∠С=94°/2=47°.
∠А+∠В+∠С+∠Д=360° и ∠В=∠Д, значит
47°+∠В+47°+∠Д=360°
∠В+∠Д=360°-94°
2∠В=266°
∠В=∠Д=266°/2
∠В=∠Д=133°
ответ: при условии а) ∠А=∠С=47° и ∠В=∠Д=133°.
Рассмотрим условие
б)разность двух из них равна 70 градусов
Поскольку противоположные углы равны у параллелограмма, значит
разность противоположных углов равна 0°.
Выходит, что 70° это разность между двумя соседними углами, то есть
∠В-∠А=70°.
Допустим, что ∠А=Х°, значит
∠А=∠С=Х°
∠В=∠Д=Х°+70°
∠А+∠В+∠С+∠Д=360°
х+(х+70)+х+(х+70)=360°
4х+140°=360°
4х=220°
х=220°/4
х=55°
То есть ∠А=∠С=Х°=55°
∠В=∠Д=Х°+70°=55°+70°=125°
ответ: при условии б) ∠А=∠С=55° и ∠В=∠Д=125°