dyatchina63
?>

Plz решите, мне нужно для исправления ​

Геометрия

Ответы

Azarova Anastasiya1707

Треугольник FGB и точка E - центр вневписанной окружности.

Объяснение:

Заметим для справки, что четырехугольник с такими свойствами как ABCD, называется дельтоидом. Но не в этом суть. В силу того, что этот четырехугольник образован двумя равными треугольниками ABC и ADC, биссектриса угла ABC пересечется со стороной AC в той же точке, что и биссектриса угла ADC, то есть в точке E. Кроме того, из симметричности прямых AB и FG относительно FD, следует равенство углов EFB и EF? (автор задания не удосужился на нужном луче проставить какую-нибудь букву, не делать же мне из-за такой небрежности автора свой чертеж; если бы мой чертеж заранее предполагался, я не стал бы браться за задачу); знак ? нужно нарисовать на луче GF за точкой F. Таким образом, точка E является точкой пересечения двух внешних углов треугольника FGB и тем самым является центром вневписанной окружности, касающейся стороны EB и продолжений сторон FG и BG

bureiko

Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC

Объяснение: Автор задания не совсем удачно обозначил  центры вписанной и описанной окружностей. Обычно центр вписанной окружности  - это точка I, центр описанной - точка O.

С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан)  и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.

Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно  AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Plz решите, мне нужно для исправления ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kuznecovav3066
козлов
karavan85450
FATAHOVAMAINA
chizhenkovd9
ВалерийАндреевна1788
rashad8985
Stepanovich_Makarov
julya847
vadim1140
lk1303
tsatskina857
vladai2
Андреевнатест707
AkulovaAnastasiya