nikomuneskazhu60
?>

На рисунке прямые а и b перпендикулярны , <1=120°.Найдите углы

Геометрия

Ответы

Bi-1704

1685+567+768+864+754+865=0

bruise6
Площадь ромба равна половине произведения его диагоналей. 
Проведем вторую (короткую) диагональ ромба. 
Две диагонали разделили  ромб  на 4 равных прямоугольных треугольника, т.к. в ромбе диагонали пересекаются под прямым углом и, как в любом параллелограмме, точкой пересечения делятся пополам. 
В каждом из них гипотенуза равна стороне ромба, а длинный катет равен половине известной диагонали. 
Пусть половина неизвестной диагонали равна х.
По т.Пифагора 
х²=65²-60²=625
х=25
Вторая диагональ равна 25*2=50
S=50*120:2=3000 ед. площади. 
(Можно вычислить площадь одного треугольника и результат умножить на 4)
Лебедев972
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На рисунке прямые а и b перпендикулярны , <1=120°.Найдите углы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vasilevich-F
alekseysokolov29816
александр496
ivanda
Adassa00441
Olga-Borisovna
ИринаАлександровна
Антон-Марина
agrilandrussia
PetrovDrozdov1785
Вячеславович-Дмитрий1694
mausgaly
zvanton
Karlova1507
k-alexey9