Реши задачу векторным методом. в треугольнике с вершинами в точках А(-1;2), В(2;-1), С(5;3) определите косинус угла В и найдите площадь треугольника решите полностью
cos a = (3*6 + (-3)*1) / (3√2*√37) = 15/(3√74) ≈ 0,58124.
Угол А = 54,46223°.
Угол В аналогично.
Вектор ВА -3 3 модуль 3√2
Вектор ВС 3 4 модуль 5
cos b = (-3*3 + 3*4) / (3√2*5) = 3/(15√2) ≈ 0,14142.
Угол B = 81,87°.
Площадь треугольника равна половине модуля векторного произведения.
Находим векторное произведение.
i j k| i j
AB 3 -3 0| 3 -3
AC 6 1 0| 6 1 = 0i + 0j + 3 k -0j - 0i + 18k = 21k.
S = (1/2)*21 = 10,5 кв.ед.
mbudilina
19.12.2022
Сначала доказываем подобие треугольников ВСН и АСН (по двум углам). Это очевидно, поскольку угол АНС и угол ВНС будут прямыми, а угол АСН = углу НВС (из треугольника АВС угол НВС = 90 - угол САВ, из треугольника АСН следует, что угол АСН = 90 - угол САВ (он же угол САН)). Так как эти треугольники подобны, то подобны и их соответственные элементы (в нашем случае биссектрисы). Поэтому коэффициент подобия треугольников АСН и ВСН равен 1/3. Из подобия следует соотношение сторон этих треугольников: АН/СН = СН/ВН = АС/ВС = 1/3 Нас интересует последнее соотношение, дающее нам катеты исходного прямоугольного треугольника АВС. Пусть АС = х, то ВС = 3х, и по т. Пифагора имеем: х² + 9х² = (2√5)² 10х² = 20 х = √2 АС = √2, ВС = 3√2 Площадь треугольника АВС равна половине произведения катетов: 1/2×√2×3√2 = 3 ответ: 3
sahabiev1987
19.12.2022
ЧТобы найти объем пирамиды, нам нужна ее высота и площадь основания. В основании правильной четырехугольной пирамиды находится квадрат. Значит, площадь основания равна 64. Чтобы найти высоту, нужно вспомнить, что высота пирамиды будет проведена в точку пересечения диагоналей квадрата (а эта точка делит диагонали квадрата пополам, причем длина диагонали квадрата составит 8√2), а также эта высота даст нам прямоугольный треугольник, где гипотенузой будет боковое ребро пирамиды, а катетами сама высота пирамиды и половина диагонали квадрата. Отсюда по теореме Пифагора находим квадрат высоты пирамиды: (√41)² - (4√2)² = 41 - 32 = 9. Значит, высота пирамиды равна √9 = 3. Пользуясь теперь формулой для объема пирамиды, имеем: 1/3×3×64 = 64 ответ: 64
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Реши задачу векторным методом. в треугольнике с вершинами в точках А(-1;2), В(2;-1), С(5;3) определите косинус угла В и найдите площадь треугольника решите полностью
Даны точки А(-1;2), В(2;-1), С(5;3).
Вектор АВ = ((2-(-1)); (-1-2)) = (3; -3), модуль равен √(9+9) = √18 = 3√2.
Вектор АС = ((5-(-1); (3-2)) = (6; 1), модуль равен √(36+1) = √37.
cos a = (3*6 + (-3)*1) / (3√2*√37) = 15/(3√74) ≈ 0,58124.
Угол А = 54,46223°.
Угол В аналогично.
Вектор ВА -3 3 модуль 3√2
Вектор ВС 3 4 модуль 5
cos b = (-3*3 + 3*4) / (3√2*5) = 3/(15√2) ≈ 0,14142.
Угол B = 81,87°.
Площадь треугольника равна половине модуля векторного произведения.
Находим векторное произведение.
i j k| i j
AB 3 -3 0| 3 -3
AC 6 1 0| 6 1 = 0i + 0j + 3 k -0j - 0i + 18k = 21k.
S = (1/2)*21 = 10,5 кв.ед.