dima0218687
?>

Составите задачу в соответствии с рисунком 7 и решите её . Изображение прикреплено.

Геометрия

Ответы

topsalon

A1.

Sшестиугольника = \frac{3\sqrt{3} a^2}{2}

ответ: 4

A2.

Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:

S = 4 (\frac{R * R}{2} )= 2 R^2

ответ: 1

A3.

Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):

R = \frac{a\sqrt{3} }{2}

a = \frac{2R}{\sqrt{3}}

Площадь одного треугольника будет равна:

S = \frac{a^2\sqrt{3} }{4}= \frac{4R^2\sqrt{3} }{3*4} = \frac{R^2\sqrt{3}}{3 }

Площадь шестиугольника:

S_w = \frac{6R^2\sqrt{3} }{3} = 2R^2\sqrt{3}

ответ: 2

B1.

Пусть вписанный треугольник - ΔABC, сторона = a; описанный - ΔA₁B₁C₁, сторона - a_1

Для ΔA₁B₁C₁ радиус R = \frac{1}{3} высоты h

h^2 = a^2 - (\frac{1}{2} a)^2 = a^2 - \frac{1}{4} a^2 = \frac{3a^2}{4} \\h = \frac{a\sqrt{3} }{2}

R = \frac{a\sqrt{3} }{2} * \frac{1}{3} = \frac{a\sqrt{3} }{6}

a = \frac{6R}{\sqrt{3} } = \frac{6\sqrt{3}R}{\sqrt{3}*\sqrt{3}} = 2\sqrt{3}R

P = 3a; P_{A_1B_1C_1} = 3 * 2\sqrt{3} R = 6\sqrt{3} R

S = \frac{1}{2} a*h; S_{A_1B_1C_1} = \frac{1}{2} * 2\sqrt{3} R * \frac{2\sqrt{3} R * \sqrt{3} }{2} = \frac{4*3*\sqrt{3} R^2}{4} = 3\sqrt{3} R^2}

Для ΔABC радиус R = \frac{2}{3} высоты h:

R = \frac{a\sqrt{3} }{2} * \frac{2}{3} = \frac{a\sqrt{3} }{3}

a = \frac{R * 3}{\sqrt{3} } = \frac{3R * \sqrt{3} }{\sqrt{3} * \sqrt{3} } = \sqrt{3} R

P_{ABC} = 3\sqrt{3} R\\S_{ABC} = \frac{1}{2} * \sqrt{3} R * \frac{\sqrt{3}R*\sqrt{3}}{2} = \frac{3R^2 * \sqrt{3}}{4}

Найдем соотношение периметров и площадей:

S_{A_1B_1C_1} : S_{ABC} = 3\sqrt{3}R^2 : \frac{3R^2\sqrt{3} }{4} = 4: 1\\P_{A_1B_1C_1} : P_{ABC} = 6\sqrt{3}R : 3\sqrt{3}R = 2 : 1

Михеев557

Нам известны все 3 измерения прямоугольного параллелепипеда, значит мы можем найти его диагональ.

a, b, c - его различные рёбра; d - его диагональ.

d^2=a^2+b^2+c^2=25+144+9*3=169+27=196=14^2\\d=14

ответ: 14 см.

Если 3√3 выражен в см.

Доказательство этой формулы:

Все грани прямоугольного параллелепипеда прямоугольники, это определение. Поэтому квадрат диагонали основания будет равен a²+b². Рассмотрим плоскость в которой есть диагональ параллелепипеда и наша диагональ прямоугольника из основания. Это плоскость образует сечение, которое является прямоугольником т.к. боковые рёбра перпендикулярны основанию, а наша диагональ прямоугольника лежит именно в основании. Так вот одна сторона прямоугольника это боковое ребро, а вторая это диагональ, которую мы искали вначале. При этом диагональ этого прямоугольника и является диагональю параллелепипеда, то есть d²=c²+(a²+b²), т.к. это прямоугольник. Что и требовалось доказать.

Смотри на рисунок, для понятности.


Упрямокутному паралелепипети сторони основи 5 см и 12 см а бичне ребро 3(корень)трех найдите диагона

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Составите задачу в соответствии с рисунком 7 и решите её . Изображение прикреплено.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sanhimki47
juliaipatova1739
tenvalerij
Panei
Галстян874
reznikvi
Budanov317
tiv67
oloinics
ainred
Mariya987
Эдгеева219
gorodof4292
alexandergulyamov
kapitan19