` ` — Здравствуйте, Norfsakilla! ` `
• Объяснение:
— | Чтобы правильно решить данную задачу, нужно быть очень умным и внимательным. | —
• Решение:
— | А теперь, давайте приступим к решению данной задаче. Начнём с 4-го и до 1-го. | —
• Фигура Nō⁴ : У фигуры номер ⁴ нет равных пар треугольников, потому что они не совпадают из за овалов, которые находятся в самом нижнем углу.
• Фигура Nō³ : У фигуры номер ³ нет равных пар треугольников из-за тех же овалов, которые находятся в нижнем углу.
• Фигура Nō² : Многие могут подумать, что правильным ответом будет считаться Фигура номер ², но они глубоко ошибаются, потому что у второй пары треугольника нет маленького квадратика в нижнем углу, который есть у первой пары треугольника, и также, это сто процентов никто не заметил, но я заметила : у второй пары треугольника, где нет квадратика, на букве М есть рядом маленькая и незаметная точечка. Приглядитесь.
• Фигура Nō¹ : А вот фигура номер ¹ может считаться правильным ответом, потому что квадратики, точечки и маленькие полосочки по серединке совпадают.
— | А теперь, когда мы разобрали данную задачу и нашли правильный ответ, мы можем записать его. | —
• ответ: у фигуры Nō¹ пары треугольников равны.
` ` — С уважением, EvaTheQueen! ` `
Поделитесь своими знаниями, ответьте на вопрос:
Решите и дайте понятный ответ
Объяснение:
1) Третий признак подобия треугольников: пропорциональны три стороны.
Сопоставим стороны треугольников ABC и ACD:
Меньшая сторона: BC = 8, CD = 12
Средняя сторона: AB = 12, AC = 18
Большая сторона: AC = 18, AD = 27
Все эти три пары относятся друг к другу как 2 к 3
BC / CD = 8 / 12 = 2 / 3
AB / AC = 12 / 18 = 2 / 3
AC / AD = 18 / 27 = 2 / 3
Отсюда следует, что треугольники подобны, что и требовалось доказать.
2) Первый признак подобия треугольников:
Два угла равны
Рассмотрим треугольники KBP и ABC
Угол ABC - общий
Углы KPB и BAC равны по условию
Значит, у этих треугольников соблюдается равенство двух углов, значит, они подобны.
3) Второй признак подобия:
Две стороны треугольников пропорциональны и углы, заключающие эти стороны, равны.
AB * BK = CB * BP
Разделим выражение на CB
(AB / CB) * BK = BP
Разделим выражение на BK
AB / CB = BP / BK
Угол ABC - общий, он заключает пропорциональные стороны треугольников, значит, треугольник ABC подобен треугольнику KBP.