Fateevsa9
?>

Из точки удаленной от плоскости на 17 см, проведены две наклонные образующие с плоскостью углы в 30 и 60. найти расстояние между концами наклонных если проекция этих наклонных перпендекулярны. И рисунок

Геометрия

Ответы

Lavka2017
Решение: 
Пусть имеется прямоугольный треугольник ABC с вписанной окружностью, причем BC -- гипотенуза. 
Известна длина гипотенузы (12+5 = 17). Известно, что две касательных, проведенных к одной окружности из одной точки, равны. На чертеже видим 3 пары касательных к одной окружности, которые попарно равны. Запишем эти соотношения (сами, сами). Так как длины отрезков гипотенузы известны, то получается, что известны длины отрезков каждого катета. Обозначим длину неизвестных отрезков катетов величиной X. Запишем выражение теоремы Пифагора для этого треугольника с учетом известных величин: 
BC^2 = AC^2 + AB^2 => 17^2 = (5+x)^2 + (12+x)^2 
Раскрываем скобки: 
289 = 25 + 10x + x^2 + 144 + 24x + x^2 
и получаем квадратное уравнение: 
2x^2 + 34x - 60 = 0 
сокращаем в 2 раза: 
x^2 + 17x - 60 = 0 
Решаем уравнение: 
D=b^2-4ac = 289 + 240 = 529 
x1,2 = (-b +- sqrt(D) ) / (2a) 
Отрицательный корень сразу отбрасываем, остается: 
x = (-17 + 23) / 2 = 3 
Окончательно, длины катетов: 
12 + 3 = 15 см и 5 + 3 = 8 см. 
Проверяем выполнение теоремы Пифаогра: 
15^2 + 8^2 = 17^2 
225+64=289 
Равенство выполняется, следовательно, найденное решение верно.решай по подобию этого

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Из точки удаленной от плоскости на 17 см, проведены две наклонные образующие с плоскостью углы в 30 и 60. найти расстояние между концами наклонных если проекция этих наклонных перпендекулярны. И рисунок
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

polikarpov-70
Sidorenko
cheshirsky-kot
Wunkamnevniki13438
Евгеньевич Балиловна1398
oslopovavera
informalla
forwandy42
Горина
samsludmila
pozhidaevgv
eleniloy26
orgot9
ajuli2
Maksim Lokhov