Viktorovna_Yurevna
?>

Знайдіть кординати центра кола діаметром AB, Якщо А(1;7), В(5;4)

Геометрия

Ответы

Faed_Arakcheeva

Таким чином, сторона ромба дорівнює m, а менша діагональ ромба дорівнює 2 * (m * sin(a/2)).

Объяснение:

У ромба всі сторони мають однакову довжину, тому сторона ромба також буде мати довжину m.

Гострий кут ромба поділений навпіл його діагоналлю. Отже, можемо розглядати півгострий кут, який дорівнює a/2.

У правильному трикутнику, сторона, що протилежна півгострому куту, дорівнює напівменшій діагоналі ромба.

Таким чином, напівменша діагональ ромба буде рівна m * sin(a/2).

Знаючи напівменшу діагональ, ми можемо знайти меншу діагональ ромба. Для цього потрібно подвоїти значення напівменшої діагоналі:

Менша діагональ = 2 * (m * sin(a/2))

Таким чином, сторона ромба дорівнює m, а менша діагональ ромба дорівнює 2 * (m * sin(a/2)).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть кординати центра кола діаметром AB, Якщо А(1;7), В(5;4)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lenskiy
astenSA
Avshirokova51
mihalewanadia20176987
info9
Виталий
Поликарпова-Мазурова
vasavto1
tnkul
zibuxin6
tata-novik
pnat1235
farmprofi
zibuxin6
galkar