Марина_Мария
?>

нужно решение. С рисунками, заранее

Геометрия

Ответы

Sergeevich-Drugov1513
У точек А и С координаты Х одинаковы, значит эта прямая проходит параллельно оси Y.
Мы знаем, что расстояние от точки до прямой - это перпендикуляр, опущенный из этой точки на прямую. В нашем случае это будет отрезок, параллельный оси Х.
Следовательно, расстояние от любой точки на координатной плоскости до прямой АС будет равно модулю разности координат Х этой точки и координаты Х точки, расположенной на этой прямой.
ответ: искомое расстояние равно (18-(-32)=50.

Решение для общего случая:
В общем случае надо было написать уравнение прямой, проходящей через две точки: А и С и из него получить уравнение перпендикуляра к этой прямой, проходящего через точку В:
(X+32)/0=(Y-16)/11 или Х+32=0  (1). То есть в уравнении прямой АС в классическом виде: Ax+By+C=0 мы получили коэффициенты А=1 и В=0.
Найдем уравнение прямой, перпендикулярной прямой АС и проходящей через точку В(18;44):
а) Выделим вектор нормали для прямой АС: n(1;0) - это НАПРАВЛЯЮЩИЙ ВЕКТОР для искомого перпендикуляра. Тогда уравнение перпендикуляра составим по точке В и направляющему вектору n(1;0):
(X-18)/1=(Y+44)/0 или Y=-44.(2) Точка пересечения прямой АС и перпендикуляра ВD к этой прямой найдется из системы уравнений (1) и (2): D(-32;-44).
Расстояние (модуль) ВD:
|ВD|=√[(Хd-Xb)²+(Yd-Yb)²]=√[(-32-18)²+(=-44-(-44))²]=50.
ответ:50.

На координатной плоскости даны точки а(-32,16), в(18,-44) и с(-32, 27). найдите расстояние от точки

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

нужно решение. С рисунками, заранее
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Kondratchik Vladimir
tvshi
a60ikurgannikova
Stryapunina
ВитальевичЕвгеньевич346
ЕСЛИ МОЖЕТЕ, ТО С ДАНО И ЧЕРЧЕЖОМ
chumakanna17
КараханянКусков
Екатерина1979
soa8690
annasv8
l250sp70
Екатерина
bondarenkoss
galustyanvitaly4842
ВадимСмирнов116