Наблюдатель который находится в точке Е, видит конец жерди М и верхнюю точку башни К, причем точки Е, М и К расположены на одной прямой. Определите высоту башни, если МS=5м, ЕF=80м , SF=64м
6. 180° · 3 = 540° (решение аналогично задаче в самом верху страницы учебника, только треугольников будет 3, а не 2; рис. 2).
7. Проведем отрезок BC (рис. 3). В любом треугольнике сумма внутренних углов равна 180°.
Тогда для треугольника KBC верно равенство:
∠KBC + ∠KCB + 120° = 180°
∠KBC + ∠KCB = 180° – 120° = 60°.
Для треугольника ABC:
(2x + ∠KBC) + (3x + ∠KCB) + 5x = 180°
(2x + 3x + 5x) + (∠KBC + ∠KCB) = 180°
10x + 60° = 180°
10x = 120°
x = 12°
2x = 24°; 3x = 36°; 5x = 60°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Наблюдатель который находится в точке Е, видит конец жерди М и верхнюю точку башни К, причем точки Е, М и К расположены на одной прямой. Определите высоту башни, если МS=5м, ЕF=80м , SF=64м
5. Могут, если этот угол прямой (рис. 1).
6. 180° · 3 = 540° (решение аналогично задаче в самом верху страницы учебника, только треугольников будет 3, а не 2; рис. 2).
7. Проведем отрезок BC (рис. 3). В любом треугольнике сумма внутренних углов равна 180°.
Тогда для треугольника KBC верно равенство:
∠KBC + ∠KCB + 120° = 180°
∠KBC + ∠KCB = 180° – 120° = 60°.
Для треугольника ABC:
(2x + ∠KBC) + (3x + ∠KCB) + 5x = 180°
(2x + 3x + 5x) + (∠KBC + ∠KCB) = 180°
10x + 60° = 180°
10x = 120°
x = 12°
2x = 24°; 3x = 36°; 5x = 60°