Любая точка биссектрисы угла равноудалена от его сторон. Точка М лежит на пересечении биссектрис АМ и ДМ. Следовательно. точка М равноудалена от прямых АВ, АД и СД. В данной задаче не стоит вопрос о доказательстве теоремы, утверждающей равенство расстояний от точки на биссектрисе до ее сторон. Кратко. Продолжив стороны параллелограмма до равенства всех его сторон, . получим ромб Точка М, являясь пересечением биссектис углов. станет центром вписанной в ромб окружности. (см.рисунок в приложении). Ее радиусы в точки касания перпендикулярны прямым, содержащим стороны параллелограмма и являются расстоянием от М до прямых, содержащих стороны параллелограмма. Радиусы окружности равны, следовательно, расстояния от М до прямых АВ, АД и СД равны, что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Ребро куба ABCDA1B1C1D1 дорівнює 10 см, точка М - середина ребра CD. Знайдіть відстань між прямими AM i OC1
Точка М лежит на пересечении биссектрис АМ и ДМ.
Следовательно. точка М равноудалена от прямых АВ, АД и СД.
В данной задаче не стоит вопрос о доказательстве теоремы, утверждающей равенство расстояний от точки на биссектрисе до ее сторон.
Кратко.
Продолжив стороны параллелограмма до равенства всех его сторон, . получим ромб
Точка М, являясь пересечением биссектис углов. станет центром вписанной в ромб окружности. (см.рисунок в приложении). Ее радиусы в точки касания перпендикулярны прямым, содержащим стороны параллелограмма и являются расстоянием от М до прямых, содержащих стороны параллелограмма. Радиусы окружности равны, следовательно, расстояния от М до прямых АВ, АД и СД равны, что и требовалось доказать.