NikolaevichIP1136
?>

Задание с чертёжём решите пожайста

Геометрия

Ответы

elvini857

Объяснение:

Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC

Объяснение: Автор задания не совсем удачно обозначил  центры вписанной и описанной окружностей. Обычно центр вписанной окружности  - это точка I, центр описанной - точка O.

С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан)  и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.

Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно  AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Задание с чертёжём решите пожайста
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

picassovrn
nofate1016585
druzhbamagazin2457
zakupki
libirishka7910
rimmatrotskaia303
alina Korneev
qwerty
Vyacheslavovich-Gubanov
gallush9
bk4552018345
dimoni86
sayfullinmr
Антонович937
contact