В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
Дано: Δabc — прямокутний, де a, b — катети, c — гіпотенуза. c:a = 5:3, b = 16 cm.
Знайти: радіус описаного кола r, площу трикутника .
Рішення:
Нехай невідомий катет b = 3x cm, гіпотенуза c = 5x cm, а відомий катет a = 16 cm. Складемо математичну модель відповідно до т. Піфагора і вирішимо її:
Від'ємний корів відкидаємо, т.я. довжина не може бути від'ємною.
Тоді:
невідомий катет b = 3x = 3·4 = 12 cmгіпотенуза c = 5x = 5·4 = 20 cmПідставимо значення у формулу площі прямокутного трикутника:
Гіпотенуза прямого трикутника рівна діаметру описаного кола:
c = d = 20 cm
Радіус кола рівний половині діаметра:
r = d/2 = 20/2 = 10 cm
Відповідь: r = 10 cm, S = 96 cm².
Поделитесь своими знаниями, ответьте на вопрос:
Дано: ад= 18 см, вс= 2 см, ас=15 см, вд=7 см. найти площадь трапеции
s=0,5(a+b)h; s= 0.5(2+18)2=20