Диагонали трапеции авмк пересекаются в точке о. основания трапеции вм и ак относятся соответственно как 2 : 3. найдите площадь трапеции, если известно, что площадь треугольника аов равна 12 см2.
1) тр-к аок подобен тр-ку вом, тогда ак / вм = ао/ ом = ок/ во = 3/2 =1,5 2) тр-к аов и тр-к омв имеют одну и ту же высоту вк, тогда s (аов) / s (омв) = ао/ ом = 1,5 отсюда s (омв) = s (аов) / 1,5 = 8 кв см 3) тр-к (воа) и тр-к ока имеют одну и ту же высоту ад , тогда s (аок) = 12*1,5 =18 кв см 4) s (мок) = 18 / 1,5 = 12 кв см 5) s(авмк) = 12+8+12+18 = 50 кв см
Maksimova-Shorokhov303
02.03.2022
Нужно нарисовать треугольник. расстояние от данной точки до прямой - это высота данного треугольника. эта высота разбивает данный треугольник на два прямоугольных, у которых известно по одному катету (9 и 16 см). наклонные - это гипотенузы полученных прямоугольных треугольников (обозначим их длины через х и х+5). а высота исходного треугольника - это общий катет этих двух прямоугольных. выразим этот катет из обоих треугольников с теоремы пифагора: х² - 81 = (х + 5)² - 256 х² - 81 = х² + 10х + 25 - 256 х² - 81 = х² + 10х - 231 10х = 150 х = 15 мы нашли одну из наклонных. а теперь находим то самое расстояние от точки (высота исходного треугольника или катет любого из 2х прямоугольных): 225 - 81 = а² (где а - та самая высота) а² = 144 а = 12 ответ 12
samirmajbubi
02.03.2022
Авс - равнобедренный тр-ник, ав=вс=40 см, вм=4√91 см, ар и ск - биссектрисы. найти кр. тр-ки арс и акс равны, так как ∠аск=∠сар, ∠кас=∠рса, сторона ас - общая, значит ак= рс, значит кр║ас, значит треугольники авс и квр подобны. в прямоугольном тр-ке авм ам²=ав²-вм²=40²-(4√91)²=144, ам=12 см, ас=2ам=24 см. коэффициент подобия тр-ков авс и квр равен: k=ав/кв. по теореме биссектрис в тр-ке авс с биссектрисой ск: вс/ас=кв/ак ⇒ кв=вс·ак/ас. ак=ав-кв, значит кв=вс(ав-кв)/ас. кв=40(40-кв)/24, 24кв=1600-40кв, 64кв=1600, кв=25 см, подставим это значение в формулу коэффициента подобия: k=ав/кв=40/25=1.6 исходя из подобия тр-ков авс и квр кр=ас/k=24/1.6=15 см - это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали трапеции авмк пересекаются в точке о. основания трапеции вм и ак относятся соответственно как 2 : 3. найдите площадь трапеции, если известно, что площадь треугольника аов равна 12 см2.
1) тр-к аок подобен тр-ку вом, тогда ак / вм = ао/ ом = ок/ во = 3/2 =1,5 2) тр-к аов и тр-к омв имеют одну и ту же высоту вк, тогда s (аов) / s (омв) = ао/ ом = 1,5 отсюда s (омв) = s (аов) / 1,5 = 8 кв см 3) тр-к (воа) и тр-к ока имеют одну и ту же высоту ад , тогда s (аок) = 12*1,5 =18 кв см 4) s (мок) = 18 / 1,5 = 12 кв см 5) s(авмк) = 12+8+12+18 = 50 кв см