gbg231940
?>

Радиус основания конуса равен 2 см. осевым сечением является прямоугольный треугольник. найдите площадь осевого сечения конуса.

Геометрия

Ответы

Stepan Rastorgueva850

осевое сечение равнобедренный прямоугольный треугольник, гипотенуза=4

х²+х²=4²

2х²=16

х²=8

х=2√2

площадь прямоугольного треугльника равна половине произведения катетов

0,5*2√2*2√2=4

pizniak

очевидно, если две плоскости взаимно перпендикулярны, мы должны использовать даную нам аксиому 4, в которой говорится   что если 2 плоскости имеют общую точку, то они пересекаются по прямой. нам дано что угол пересечения равен 90 градусам, что дает нам понять что треугольники будут задействованы. проведем отрезки из точки а равные 20 и 21 см. оттуда мы их соединим, и продлим их. получим 2 квадрата гипотенузы умноженные на 4. после чего нужно использовать формулу радиуса окружности вокруг треугольника за площадью. (герона) после этого спокойно говорим что за теоремой 2.2 2 прямые лежать в 1 плоскости. так как они пересекают плоскость (пускай альфа) то они лежат в этой площине за 3 аксиомой.из этого выходит что угол пересечаения дает нам использовать все теоремы планиметрии. такие как теорема пифагора или среднего значения. из чего выплывает ответ : 20.5 см!

e-s-i-k
Дан правильный тетраэдр мавс. все его ребра равны. ав=ас=вс=ма=мв=мс=√6/2. через точку а₁ на ребре ав, аа₁=а₁в в плоскости треугольника амв  проведем прямую параллельную прямой ам. получим точку м₁, лежащую на ребре мв, такую, что мм₁=м₁в.  ам || a₁m₁.  через точку м₁ в грани мвс проведём прямую параллельную мс. получим точку с₁ на ребре вс, так что вс₁=с₁с. мс || м₁с₁ соединим точки а₁ и с₁, получим треугольник  а₁с₁м₁ - нужное нам сечение. причем а₁с₁ || ac, так как является средней линией треугольника авс. каждая сторона треугольника а₁м₁с₁ является средней линией треугольника амс и а₁м₁=а₁с₁=м₁с₁=√6/4 чтобы найти расстояние между плоскостями амс и а₁м₁с₁ опустим перпендикуляр из точки в на плоскость амс. так как дан тетраэр, то вершина в проектируется в центр окружности, описанной около правильного треугольника амс оа=ос=ом=r аналогично точка о₁ - центр окружности, описанной около правильного треугольника а₁м₁с₁ о₁а₁=о₁с₁=о₁м₁=r/2 в силу подобия треугольников  амс и а₁м₁с₁ с коэффициентом подобия 2. радиус окружности описанной около равностороннего треугольника можно найти по формуле при a=√6/2 получаем r=√6/2 ·√3/3=√2/2 тогда по теореме пифагора во²=ав²-ао²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1 значит во₁=1/2 в силу подобия и оо₁=во-во₁=1/2 ответ 1/2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Радиус основания конуса равен 2 см. осевым сечением является прямоугольный треугольник. найдите площадь осевого сечения конуса.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

milleniumwood633
Fomin Korablev1781
Dmitrievich1871
NIKOLAI
Yurok9872
Мария591
fialkaflowers77
inbox466
buleckovd8724
Dmitriy793
spodobnyi
Yekaterina
ИльяАндреевич-Мария
АркадьевичБундин789
tkozina