Теорема Безу
Остаток от деления многочлена f(x) на двучлен (x - a) равен f(a)
Доказательство
f(x) = (x - a)·g(x) + r, где g(x) - частное, имеет степень на 1 меньше, чем f(x), а r - число (многочлен степени 0)
Тогда, подставляя x = a получаем:
f(a) = (a - a)·g(a) + r, то есть получаем f(a) = r, или r = f(a) - что и требовалось.
Теорема 2
x = a - корень f(x) ⇔ f(x) делится на (x - a)
Доказательство
из теоремы Безу получаем, что если f(a) = 0 (то есть a - корень f(x)) ⇒ f(x) = (x - a)·g(x) + 0 ⇒ f(x) при делении на (x - a) дает g(x) при 0-м остатке, а значит делится (x - a)
Обратно: раз f(x) делится на (x - a), значит остаток равен 0, а он по теореме Безу равен f(a), то есть a - корень f(x)
Поделитесь своими знаниями, ответьте на вопрос:
Упрастите выражения (13 ху – 11х2 + 10у2) – (-15 х2 + 10ху – 15у2), (14 ав2 – 17ав + 5а2в) + (20ав – 14а2в
Был произведён один выстрел.
Гипотезы:
A₁ - стрелял первый стрелок,
A₂ - стрелял второй стрелок,
A₃ - стрелял третий стрелок.
Событие А - после выстрела мишень поражена.
P(A₁) = P(A₂) = P(A₃) = 1/3.
P(A|A₁) = 0,3
P(A|A₂) = 0,5
P(A|A₃) = 0,8
По формуле полной вероятности
P(A) = P(A₁)·P(A|A₁) + P(A₂)·P(A|A₂) + P(A₃)·P(A|A₃) =
= (1/3)·0,3 + (1/3)·0,5 + (1/3)·0,8 = 1,6/3.
По формуле Байеса
P(A₂·A) = P(A₂)·P(A|A₂),
P(A₂·A) = P(A)·P(A₂|A),
P(A)·P(A₂|A) = P(A₂)·P(A|A₂)
P(A₂|A) = P(A₂)·P(A|A₂)/P(A)
P(A₂|A) = ( (1/3)·0,5)/(1,6/3) = 0,5/1,6 = 5/16 = 0,3125.
ответ. 0,3125.