1)строим прямоугольный треугольник. гипотенуза медиана, катет - высота. другой катет будет прямой, на которой лежит наша подопытная сторона. проводим сторону треугольника так, чтобы середина попала в конец медианы. дальше проводим отрезки, соединяющие начало медианы и конец нашей подопытной стороны. 2)откладываем основание. строим параллельную линию основанию на расстоянии в двое меньшей заданной высоты. и параллельную на расстоянии равной заданной высоте. потом циркулем проводим радиус равный длине медианы до пересечения с параллельной прямой которая лежит на расстоянии в двое меньше высоты. теперь из точки основания противоположной той из которой был построен радиус, проводим прямую проходящую через точку пересечения радиуса с первой параллельной линии до второй. вершина найдена. обоснование: так как медиана делит треугольник на две равные части. то высота проведенная из точки пересечения медианы со стороной будет в два раза меньше данной высоты.
hellomaxim
07.12.2022
Пусть авс - равнобедренный треугольник с основанием ас = 9,6 см. 1). ав = вс = (25,6 - 9,6) / 2 = 8 (см) 2). рассмотрим треугольник авн, где вн - высота треугольника, проведенная к основанию, значит, и медиана. ан = ас / 2 = 9,6 / 2 = 4,8 (см). по теореме пифагора (см) 3). вн, ск и аf - высоты треугольника, пересекаются в т. о. найдем расстояние ао. для этого найдем сначала аf. 4). (см) 5). треугольники аон и acf подобны по двум углам (углы в 90 градусов и общий острый угол при вершине а). (см) ответ: 6 см.
Klochkov malakhov1974
07.12.2022
Немного теории: для обозначения фигур и их проекций, для отображения отношения между фигурами, а также для краткости записей предложений, алгоритмов решения и доказательства теорем используются символьные обозначения. - большими латинскими буквами a, b, c, d, l, m, n, - обозначают точки расположенные в пространстве; - малыми латинскими буквами a, b, c, d, l, m, n, - обозначают линии, расположенные в пространстве; - малыми греческими буквами α, β, γ, δ, ζ, η, θ - обозначают плоскости; ∈, ⊂ , ⊃ - такими знаками обозначают принадлежность точек прямой и прямых плоскости теперь : 1 точка m принадлежит плоскости альфа но не принадлежит плоскости бета α, β, плоскости, м- точка м∈α, м∉β 2 прямая l и точка n не лежащая на прямой l. принадлежат плоскости бета n ∉l; n∈α; l⊂α
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Постройте треугольник по стороне: 1) и проведенным к ней медиане и высоте; 2) медиане и высоте, проведенным к другой стороне.