На фотографии.
Объяснение:
Тут ситуация весьма неоднозначна. Тут будет аж две фигуры ограниченных этими графиками и осью Ox. Я нашёл и первую и вторую, какую вам выбрать и предоставить преподавателю, решать вам ;) ответ в обоих случаях получился примерным, потому что графики пересекаются не в целой точке. Решение для нахождения первой фигуры я обозначил римской цифрой 1, а второй - 2.
P.S. Я не понимаю, зачем преподаватели задают такие задания.
Вот, надеюсь, правильно. Желаю удачи.
P.P.S Сейчас я понял, что этих фигур ещё оказывается 3
0_0 Но, я думаю 2 будет достаточно :) Задание - найти ФИГУРУ. По идее, одну.
Объяснение: Уравнение эллипса (x^2 / a) + (y^2 / b) = 1, где а - полуось, располагающаяся на оси Ох, а b - полуось, располагающаяся на оси Оу
1) По условию b = 1/2 * 4√7 = 2√7, т.к. фокусы лежат на оси Оу
с - половина расстояния м/ду фокусами
F1F2 = √((0-0)^2 + (√3 + √3)^2) = 2√3
c = 1/2 * 2√3 = √3
c^2 = b^2 - a^2
a = √(28 - 12) = 4
Уравнение примет вид:
(x^2 / 16) + (y^2 / 28) = 1
2) 1) a = 5, b = 3
длины осей эллипса 2a = 10, 2b = 6
Координаты вершин: A1 (-5;0) A2 (5;0) B1(0;-3) B2(0;3)
2) a = 4, b =9
длины осей эллипса 2a = 8, 2b = 18
Координаты вершин: A1 (-4;0) A2 (4;0) B1(0;-9) B2(0;9)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите наибольшее значение функции. y=log(x^2-4x+29) по основанию 0, 2