Раскладываем 1680 на множители: 1680=2*2*2*5*6*7=5*6*7*8 следовательно х=1
tanya62soldatova72
15.01.2021
|+7| = 7 |-7| = 7, поэтому, если |x| = 7, то делаем вывод, что x = +-7 a) |2x-5|-1 = 7 или |2x-5|-1 = -7 |2x-5| = 8 или |2x-5| = -6 невозможно по определению модуля 2x-5 = 8 или 2x-5 = -8 2x = 13 или 2x = -3 x = 6.5 или x = -1.5 б) |2x-1|-5 = 7 или |2x-1|-5 = -7 |2x-1| = 12 или |2x-1| = -2 невозможно по определению модуля 2x-1 = 12 или 2x-1 = -12 2x = 13 или 2x = -11 x = 6.5 или x = -5.5 3x+2 = 5x+6 или 3x+2 = -(5x+6) 2x = -4 или 8x = -8 x = -2 или x = -1
timsch12
15.01.2021
Один из способов - это просто всё раскрыть: (2-a)(4+4a+a²)=8-a³-2a²+4aперемножить и объединить с одинаковой буквенной частью: 8+8a+2a²-4a-4a²-a³=8-a³-2a²+4aв итоге мы получаем тождество: 8+4a-2a²-a³=8-a³-2a²+4a второй способ (я его советую): преобразуем вторую часть выражения (2-a)(2+a)²=8-a³-2a²+4a теперь во второй части сгруппируем, вынесем общий множитель и получим: 8-2a²+4a-a³=2(4-a²)+a(4-a²) (2+a)(4-a²)перепишем полностью, раскроем по формулам оставшиеся скобки: (2-a)(2+a)²= (2+a)(4-a²)в итоге получим тождество: (2-a)(2+a)(2+a)=(2+a)(2-a)(2+a)