Пусть c = cos(x), s = sin(x). 1) одз: cos(x) < > 0 => x < > p/2 + 2pn домножим обе части равенства на cos(x) < > 0: 2с^2 - 2sc + s - c = 0 (c - s)(2c - 1) = 0 cos(x) = sin(x) => 1 - tg(x) = 0 => tg(x) = 1 => x = p/4 + pn 2c - 1 = 0 cos(x) = 0.5 => x = +-p/3 + 2pn в итоге x = +-p/3 + 2pn, x = p/4 + pn. так как нас интересуют значения х на промежутке [3p/2; 3p], т.е 1., то подходят 2p - p/3, 2p + p/4, 2p + p/3 .ответ: 2p + p/3, 2p - p/3, 2p + p/4.2) sinx+1/1-cos2x=sinx+1/1+cos(p/2+x) (s+1)/(2*s*s) = (s + 1)/(1 - s) одз: sin(x) < > 0 => x < > pn sin(x) < > 1 => x < > p/2 + 2pn s + 1 = 0 => sin(x) = -1 => x = 2pn - p/2 2s*s = 1 - s 2s*s + s - 1 = 0 решим как квадратное уравнение: s1 = 2/4 = 0.5 => sin(x) = 0.5 => x = (-1)^n*(p/6) + pn s2 = -4/4 = -1 (такие корни уже были) в итоге: x = 2pn - p/2, x = (-1)^n*(p/6) + pn. причем x < > pn, x < > p/2 + 2pn. по условию нужно выбрать корни на промежутке [-3p/2; -p/2], т. е. от -1.5р до -0.5р.2pn - p/2: при n = 1: x = -1.5p, но так как x < > p/2 + 2pn, этот корень не подходит. при n = 0: x = -0.5p. (-1)^n*(p/6) + pn: при n = -1: x = -p - p/6. ответ: x = -0.5p, x = -p - p/6.