В решении.
Объяснение:
х - числитель;
х + 1 - знаменатель;
х/(х + 1) - первоначальная дробь.
х - 2 - новый числитель;
(х + 1) - 2 = х - 1 - новый знаменатель;
(х - 2)/(х - 1) - новая дробь;
Разница по условию 1/4, уравнение:
х/(х + 1) - (х - 2)/(х - 1) = 1/4
Умножить все части уравнения на 4(х + 1)(х - 1), чтобы избавиться от дробного выражения:
х * 4(х - 1) - 4(х + 1) * (х - 2) = 1 * (х + 1)(х - 1)
Раскрыть скобки:
4х² - 4х - 4(х² - 2х + х - 2) = х² - 1
4х² - 4х - 4х² + 4х + 8= х² - 1
Привести подобные:
8 = х² - 1
х² = 8 + 1
х² = 9
х = ±√9
х = ±3;
Если х = -3, то первоначальная дробь выглядит так:
-3/(-3 + 1) = -3/-2 = 3/2, но по условию дробь правильная, отбросить;
Если х = 3, то первоначальная дробь выглядит так:
3/(3 + 1) = 3/4, соответствует условию.
Значит, числитель исходной дроби равен 3, знаменатель равен 4.
x+1+|x²-x-3|=0.
x+1+|x²-x-3|=0.По определению модуля:
x+1+|x²-x-3|=0.По определению модуля:1) Если х²-х-3≥0, то |x²-x-3|=x²-x-3
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0(х-√2)(х+√2)=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0(х-√2)(х+√2)=0х=√2 или х=-√2
При х=√2
ри х=√2 х²-х-3=(√2)²-√2-3<0.
ри х=√2 х²-х-3=(√2)²-√2-3<0.х=√2 не является корнем уравнения
При х=-√2
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.х=-√2- корень уравнения.
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.х=-√2- корень уравнения.2) Если х²-х-3<0, то |x²-x|=-x²+x+3
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0D=4+16=20
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0D=4+16=20x=(2-2√5)/2=1-√5 или х=(2+2√5)/2=1+√5
При х=1-√5
ри х=1-√5х²-х-3=(1-√5)²-(1-√5)-3=1-2√5+5-1+√5-3=2-√5<0 - верно
ри х=1-√5х²-х-3=(1-√5)²-(1-√5)-3=1-2√5+5-1+√5-3=2-√5<0 - вернох=1-√5 - корень уравнения
При х=1+√5
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - неверно
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - невернох=1+√5 - не является корнем уравнения
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - невернох=1+√5 - не является корнем уравненияОбъединяем ответы, полученные в 1) и 2).
ответ: х=-√2; х=1-√5
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение(5х+6)во 2 степени -(5х-6)во 2. степени =12