Объяснение:
( x + 2 ) ^ 4 - 4 * ( x + 2 ) ^ 2 - 5 = 0 ;
Пусть ( х + 2 ) ^ 2 = а, тогда:
а ^ 2 - 4 * a - 5 = 0 ;
a1 = ( 4 - √36 ) / ( 2 * 1 ) = ( 4 - 6 ) / 2 = - 2 / 2 = - 1 ;
a2 = ( 4 + √36 ) / ( 2 * 1 ) = ( 4 + 6 ) / 2 = 10 / 2 = 5 ;
Тогда:
1 ) ( x + 2 ) ^ 2 = - 1 ;
x ^ 2 + 4 * x + 4 = - 1 ;
x ^ 2 + 4 * x + 4 + 1 = 0 ;
x ^ 2 + 4 * x + 5 = 0 ;
Нет корней ;
2 ) ( x + 2 ) ^ 2 = 5 ;
x ^ 2 + 4 * x + 4 = 5 ;
x ^ 2 + 4 * x - 1 = 0 ;
x1 = ( -4 - √20 ) / ( 2·1 ) = -2 - √5 ;
x2 = ( -4 + √20 ) / ( 2·1 ) = -2 + √5 ;
ответ: х = -2 - √5 и х = -2 + √5
Теорема о медианах треугольника
Рассмотрим произвольный треугольник АВС.
teorema_o_medianah_treugolnikama – медиана треугольника, проведенная к стороне BC
mb – медиана треугольника, проведенная к стороне AC
mc– медиана треугольника, проведенная к стороне AB
O – центр пересечения медиан треугольника
A, B, C – вершины треугольника
Теорема о медианах треугольника формулируется следующим образом: медианы треугольника пересекаются в одной точке (на рисунке точка O) и делятся этой точкой в пропорции 2:1, если считать от вершины, с которой проведена медиана.
Все формулы по теме теорема о медианах треугольника:
Основные формулы
Формулы площадей
Формулы объемов
Формулы периметра
Геометрические фигуры
Объемные тела
Площадь поверхности
Тригонометрические формулы
Теоремы по геометрии
Теорема Пифагора
Обратная теорема Пифагора
Теорема косинусов
Теорема синусов
Теорема тангенсов
Теорема о медианах треугольника
Теорема о биссектрисе
Теорема о сумме углов треугольника
Теорема о сумме углов многоугольника
Теорема Чевы
Теорема Виета
Теорема Фалеса
Поделитесь своими знаниями, ответьте на вопрос:
Из пункта а в пункт в, расстояние между которыми 360 км, выехали одновременно два автомобиля. за 3 ч первый из них про-шел расстояние на 30 км больше, чем второй. найдите скорость каждого автомобиля, если известно, что на весь путь первый автомобиль затратил на полчаса меньше, чем второй.