1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168
ответ: 10 и 48
Объяснение:
Пусть : LE=a и FS=b - отрезки соединяющие середины противоположных сторон трапеции ABCD. Углы при основании 12° и 78°.
Проведем из точки L отрезки LM и LN параллельно боковым сторонам трапеции. Тогда ABLM и LNCD - параллелограммы , а значит
BL=AM=LC=ND=x.
Поскольку параллельные отрезки образуют с нижним основанием равные углы , то углы при основании MN ΔLMN , так же равны 12° и 78° . Тогда из суммы углов треугольника
∠L=180°-12°-78°=90°
Таким образом ΔLMN - прямоугольный.
Поскольку AE=ED и AM=ND=x , то ME=EN
Откуда LE медиана прямоугольного ΔLMN на гипотенузу MN , а значит равна половине этой гипотенузы
ME=EN=LE=a
FS=b - средняя линия трапеции .
Таким образом :
FS= (AD+BC)/2
b= (2*x +2*(x+a) )/2 = x+(x+a) =2x+a = BC+a
BC=b-a - верхнее основание
AD= 2a+2x = 2a+BC =2a +b-a = b+a
Поскольку BC>0 (это отрезок) , то b>a
А значит b=29 ; a=19
BC=29-19=10
AD=29+19=48
Поделитесь своими знаниями, ответьте на вопрос:
Как слаживать натуральные числа со степенями?