Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a + b)2 = a2 + 2ab + b2
2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a - b)2 = a2 - 2ab + b2
3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.
a2 - b2 = (a -b) (a+b)
4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.
(a - b)3 = a3 - 3a2b + 3ab2 - b3
6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.
a3 + b3 = (a + b) (a2 - ab + b2)
7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.
a3 - b3 = (a - b) (a2 + ab + b2)
Применение формул сокращенного умножения при решении примеров.
Пример 1.
Вычислить
а) (40+1)2
б) 982
а) Используя формулу квадрата суммы двух выражений, имеем
(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681
б) Используя формулу квадрата разности двух выражений, получим
982 = (100 – 2)2 = 1002 - 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604
Пример 2.
Вычислить
Решение
Используя формулу разности квадратов двух выражений, получим
Пример 3.
Упростить выражение
(х - у)2 + (х + у)2
Решение
Воспользуемся формулами квадрата суммы и квадрата разности двух выражений
(х - у)2 + (х + у)2 = х2 - 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2
Формулы сокращенного умножения в одной таблице:
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a - b) (a+b)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a - b)3 = a3 - 3a2b + 3ab2 - b3
a3 + b3 = (a + b) (a2 - ab + b2)
a3 - b3 = (a - b) (a2 + ab + b2)
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение (x^2-49)^2+( x^2+4x-21)^2=0
если рассмотреть, то оба слагаемых положительны и сумма будет = 0,если оба слагаемых = 0
(х²-49)²=0 (x²+4x-21)²=0
х²-49=0 x²+4x-21=0
(х-7)(х+7)=0 Д=4²-4*(-21)=100
х-7=0 х+7=0 х₃=(-4-10):2=-7
х₁=7 х₂=-7 x₄=(-4+10):2=3
при х=7
(7²-49)²+(7²+4*7-21)²=0
(49-49)²+(49+28-21)²=0
0+56²=0
не верно
при х=-7
((-7)²-49)²+((-7)²+4*(-7)-21)²=0
(49-49)²+(49-28-21)²=0
0+0=0
0=0
верно
при х=3
(3²-49)²+(3²+4*3-21)²=0
(9-49)²+(9+12-21)²=0
(-40)²+0=0
не верно
ответ:х=-7