Объяснение:
udv + vdu или udv = d(uv) - vdu.
Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:
∫ udv = uv - ∫ vdu (8.4.)
Эта формула выражает правило интегрирования по частям. Оно приводит интегрирование выражения udv=uv'dx к интегрированию выражения vdu=vu'dx.
Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда
∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.
Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но
Поделитесь своими знаниями, ответьте на вопрос:
При каких значениях параметра уравнение имеет отрицательные корни?
2)а≠0, тогда уравнение будет квадратным и оно имеет корни если Д≥0
Д1=4а²-4а²+5а=5а≥0 ⇒ а≥0 , учитывая что а≠0, получаем a>0
т.к. корни отрицательные, то согласно теореме Виета
4а-5/a>0 и 4<0
система решений не имеет
ответ: нет таких значений а, чтобы корни были отрицательные