andre6807
?>

Какие значения может принимать модуль х-7 если модуль х-4 =6

Алгебра

Ответы

maltes
|х-4| = 6, т.е. |х| = 10, -10.
|х-7|: -(х-7) = -х+7 = -10+7 = -3, х-7 = 10-7 = 3.
VolkovaMaslova
Периодичность тригонометрических функций. Полупериодичность синуса и косинуса      Рассмотрим рисунок 5.Рис.5      Если луч OM1, изображенный на рисунке 5, повернуть по ходу или против хода часов на полныйугол (360 градусов или 2π  радиан), то он совместится с самим собой. Следовательно, справедливы формулы:sin (α° + 360°) = sin α°,   cos (α° + 360°) = cos α°,sin (α° – 360°) = sin α°,   cos (α° – 360°) = cos α°,а также формулы:sin (α + 2π) = sin α ,   cos (α + 2π) = cos α ,sin (α – 2π) = sin α,   cos (α – 2π) = cos α.      Поворачивая луч  OM1 на полный угол по ходу или против хода часов n раз ( 360n градусов или2nπ  радиан), получаем следующие формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами синуса и косинусаявляются углы   360° n, .      В случае, когда углы измеряются в радианах, периодами синуса и косинуса являются числа   2nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом синуса и косинуса является угол 360°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом синуса и косинуса является число 2π .      Теперь рассмотрим рисунок 6.Рис.6      Если луч  OM1, изображенный на рисунке 6, повернуть по ходу или против хода часов на развернутый угол (180 градусов или π радиан), то он совместится с лучом    OM2 . Следовательно, справедливы формулы:sin (α° + 180°) = – sin α°,   cos (α° + 180°) = – cos α°,sin (α° – 180°) = – sin α°,   cos (α° – 180°) = – cos α°,а также формулы:sin (α + π) = – sin α ,   cos (α + π) = – cos α ,sin (α – π) = – sin α,   cos (α – π) = – cos α.      Полученные формулы описывают свойство полупериодичности синуса и косинуса.      Таким образом, в случае, когда углы измеряются в градусах, угол 180° является полупериодом синуса и косинуса.      В случае, когда углы измеряются в радианах, полупериодом синуса и косинуса является число π.      Следствие. Посколькуто справедливы формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами тангенса и котангенсаявляются углы  180° n,       В случае, когда углы измеряются в радианах, периодами тангенса и котангенса являются числа   nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом тангенса и котангенса является угол  180°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом тангенса и котангенса являются число π.
zaschitin48
Периодичность тригонометрических функций. Полупериодичность синуса и косинуса      Рассмотрим рисунок 5.Рис.5      Если луч OM1, изображенный на рисунке 5, повернуть по ходу или против хода часов на полныйугол (360 градусов или 2π  радиан), то он совместится с самим собой. Следовательно, справедливы формулы:sin (α° + 360°) = sin α°,   cos (α° + 360°) = cos α°,sin (α° – 360°) = sin α°,   cos (α° – 360°) = cos α°,а также формулы:sin (α + 2π) = sin α ,   cos (α + 2π) = cos α ,sin (α – 2π) = sin α,   cos (α – 2π) = cos α.      Поворачивая луч  OM1 на полный угол по ходу или против хода часов n раз ( 360n градусов или2nπ  радиан), получаем следующие формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами синуса и косинусаявляются углы   360° n, .      В случае, когда углы измеряются в радианах, периодами синуса и косинуса являются числа   2nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом синуса и косинуса является угол 360°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом синуса и косинуса является число 2π .      Теперь рассмотрим рисунок 6.Рис.6      Если луч  OM1, изображенный на рисунке 6, повернуть по ходу или против хода часов на развернутый угол (180 градусов или π радиан), то он совместится с лучом    OM2 . Следовательно, справедливы формулы:sin (α° + 180°) = – sin α°,   cos (α° + 180°) = – cos α°,sin (α° – 180°) = – sin α°,   cos (α° – 180°) = – cos α°,а также формулы:sin (α + π) = – sin α ,   cos (α + π) = – cos α ,sin (α – π) = – sin α,   cos (α – π) = – cos α.      Полученные формулы описывают свойство полупериодичности синуса и косинуса.      Таким образом, в случае, когда углы измеряются в градусах, угол 180° является полупериодом синуса и косинуса.      В случае, когда углы измеряются в радианах, полупериодом синуса и косинуса является число π.      Следствие. Посколькуто справедливы формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами тангенса и котангенсаявляются углы  180° n,       В случае, когда углы измеряются в радианах, периодами тангенса и котангенса являются числа   nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом тангенса и котангенса является угол  180°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом тангенса и котангенса являются число π.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какие значения может принимать модуль х-7 если модуль х-4 =6
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

turaev-1098
maksmi
Kochereva-Sergei
Alex-kustov
kotikdmytriy11
fymukham
Алина Ракитин1730
Выполни действия: (p2−p+3)⋅(19p2+p−3)
Галстян874
aaltuxova16
osandulyak
maryshecka
Amulenkov
Андреевич
catmos
Максим