si0000
?>

Найдите значение выражения m/n^2-mn + n/ m^2-mn

Алгебра

Ответы

Irina321t
m            +   n               = 1 
m(n-m)         m(n-m)         mn     
koll23

Дано: АВСД - трапеция, АВ=СД, АД=20√3, ∠А=∠Д=60°, АС⊥СД. Найти S(АВСД).

Решение: Проведем высоту СН, тогда S(АВСД)=(ВС+АД):2*СН.

Рассмотрим ΔАСД - прямоугольный, ∠Д=60°, тогда ∠САД=90-60=30°, а СД=1\2 АД=20√3:2=10√3.

Диагональ АС перпендикулярна к боковой стороне и делит угол А пополам, значит большее основание трапеции в два раза больше меньшего основания и её боковых сторон;  и высота трапеции равна половине её диагонали.

СД=ВС=20√3:2=10√3;

АС²=(20√3)²-(10√3)²=1200-300=900;  АС=√900=30.

СН=1\2 АС=30:2=15.

S(АВСД)=(20√3+10√3):2*15=225√3 (ед²).

ответ: 225√3 ед²

Popova-Erikhovich

Пусть дано квадратное уравнение a•x²+b•x+c=0, a≠0. Теорема Виета доказывается для приведённых квадратных уравнений, то есть когда коэффициент a=1.  А другие уравнения приводятся к такому виду.

Теорема Виета. Числа x₁ и x₂ являются корнями квадратного уравнения x²+p•x+q=0 тогда и только тогда, когда пара (x₁; x₂) является решением системы:

\displaystyle \left \{ {{x_{1} +{x_{2} = -p} \atop {{x_{1} * {x_{2} =q}} \right.

Теорема Виета утверждает, что квадратное уравнение и система одновременно разрешимы или неразрешимы. Ещё, теорема Виета даёт подбора корней:

Корни уравнения являются делителями свободного члена q!  

Отсюда вывод: если корни уравнения целочисленные, то легко определить корни, если разложить свободный член q на множители.

Рассмотрим примеры.

Пример-1. Решить уравнение: x²–3•x+2=0.

Решение. По теореме Виета x₁ + x₂ = 3 и x₁ · x₂ = 2. Предполагая, что корни уравнения целочисленные рассмотрим разложение: 2 = 1•2 = (–1)•(–2). Но из x₁ + x₂  = 3 видно, что корнями уравнения будут x₁=1 и x₂=2.

Пример-2. Решить уравнение: x²–6•x+8=0.

Решение. По теореме Виета x₁ + x₂  = 6 и x₁ · x₂ = 8. Предполагая, что корни уравнения целочисленные рассмотрим разложение: 8 = 1•8 = 2•4 = (–1)•(–8) =  (–2)•(–4). Но из x₁ + x₂  = 6 видно, что корнями уравнения будут x₁=2 и x₂=4.

Пример-3. Решить уравнение: x²+4•x+4=0.

Решение. По теореме Виета x₁ + x₂  = –4 и x₁ · x₂ = 4. Предполагая, что корни уравнения целочисленные рассмотрим разложение: 4 = 1•4 = 2•2 = (–1)•(–4) =  (–2)•(–2). Но из x₁ + x₂  = –4 видно, что корнями уравнения будут x₁= –2 и x₂= –2.

Вот основная суть теоремы Виета.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение выражения m/n^2-mn + n/ m^2-mn
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

gurman171
sve-lysenko
Elen-ti81459
secretary
Егорова
Yurevna419
Voshchula David393
IP1379
valerii-borisovich550
MikhailovichVitalevich1393
polina3mag
dariagromova54
d111180
miha23727
mrropevvv