Пусть, для определённости, d>=c>=b>=a. Тогда всю дробь можно переписать в виде:

Что и требовалось доказать.
Пояснение: Выражение после первого знака неравенства получается, если взять наименьший знаменатель, а это d+d+d=3d.
Выражение после второго знака неравенства получается оттого, что мы берём наибольший числитель(то есть b+c+a=a+a+a=3a).
Выражение после третьего знака неравенства справедливо так как a>=d, то есть a/d>=1. Отсюда 3*(a/d)>=1*3=3
P.S. Если что-то непонятно, то не стесняйся спрашивать)
Графики уравнений пересекаются в том случае, если существуют пары чисел, удовлетворяющие, в качестве решения, обоим уравнениям. Если общих решений системы уравнений нет, то такие графики не пересекаются.
a). { -3y + x + 5 = 0
{ 7 - 5y = -2x
Выразим в первом уравнении х через у и подставим во второе:
{ x = 3y - 5
{ 7 - 5y = -2(3y - 5)
7 - 5y + 6y - 10 = 0
y = 3 x = 3·3 - 5 = 4
Таким образом существует пара чисел (4; 3), которая является решением каждого уравнения. На координатной плоскости этой паре соответствует точка с координатами х = 4, у = 3.
Полученная точка и является точкой пересечения графиков данных уравнений.
б). { x + 5 = 3y
{ x - 3y = -5
Так как из первого уравнения путем переноса получается второе, то эти уравнения идентичны. Следовательно, графики данных уравнений совпадают и существует бесконечное множество точек, являющееся решением данной системы.
Поделитесь своими знаниями, ответьте на вопрос: