На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.
Технически метод замены переменной в неопределенном интеграле реализуется двумя :
– Подведение функции под знак дифференциала;
– Собственно замена переменной.
По сути дела, это одно и то же, но оформление решения выглядит по-разному.
Начнем с более простого случая.
Подведение функции под знак дифференциала
На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:
То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.
Пример 1
Найти неопределенный интеграл. Выполнить проверку.
Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?
Подводим функцию под знак дифференциала:
Раскрывая дифференциал, легко проверить, что:
Фактически и – это запись одного и того же.
Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?
Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.
Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:
Теперь можно пользоваться табличной формулой :
Готово
Единственное отличие, у нас не буква «икс», а сложное выражение .
Выполним проверку. Открываем таблицу производных и дифференцируем ответ:
Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Найти неопределенный интеграл.
:
Объяснение:
В решении.
Объяснение:
Задача 1)Найти уравнение прямой, проходящей через k(2;-1) и m(-2;4).
Формула, при которой можно построить уравнение прямой по двум точкам:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁)
k(2; -1) и m(-2; 4)
х₁=2 у₁= -1
х₂= -2 у₂= 4
Подставляем данные в формулу:
(х-2)/(-2)-2)=(у-(-1))/(4-(-1))
(х-2)/(-4)=(у+1)/5 перемножаем крест-накрест, как в пропорции:
5(х-2)= (у+1)(-4)
5х-10= -4у -4
4у= -5х+6
у= (-5х+6)/4
у= -1,25х + 1,5 - искомое уравнение.
Задача 2)Найти прямую, проходящую через k(3;-2)перпендикулярно прямой x+2y-4=0.
2у = -х+4
у= -0,5х +2.
Чтобы прямая была перпендикулярна графику заданной функции, коэффициент при х должен быть равным по значению, но с противоположным знаком, значит, k=0,5.
Нужно найти коэффициент b, используя известные координаты точки k (3; -2).
Подставить в уравнение данные значения и вычислить b:
-2 = 0,5*3 + b
-b = 1,5+2
b = -3,5
у = 0,5х-3,5 - искомое уравнение.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите значение выражения (2×3)^2+(-3×4)^3-(5×2)^4