Объяснение:
Функция задана формулой y=-3x+1
1)значении функции если значение аргумента ровно 4 ?
2)значения аргумента , при котором значение функции равно -5
2)проходит ли график функции через точку А(-2;7)
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 4 1 -2
а)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=4
у= -3*4+1= -11 при х=4 у= -11
б)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -5
-5= -3х+1
3х=1+5
3х=6
х=2 у= -5 при х=2
в)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A (−2; 7)
y = −3x + 1
7= -3*(-2)+1
7=6+1
7=7, проходит.
Решение системы уравнений х=10
у=12
Объяснение:
Решить систему уравнений.Методом алгебраического сложения.
x/5-y/6=0
5x-4y=2
Нужно избавиться от дробного выражения в первом уравнении, общий знаменатель 30, надписываем над числителями дополнительные множители:
6*х-5*у=0
6х-5у=0
5х-4у=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, коэффициенты или при х, или при у были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают одно из уравнений, как бы подгоняют ко второму, можно умножать обе части уравнения на одно и то же число, делить.
Поэтому первое уравнение умножим на -5, а второе на 6:
-30х+25у=0
30х-24у=12
Складываем уравнения:
-30х+30х+25у-24у=12
у=12
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
5х-4*12=2
5х-48=2
5х=2+48
5х=50
х=10
Решение системы уравнений х=10
у=12
Поделитесь своими знаниями, ответьте на вопрос:
Найти значение выражения log3 9a если log3 a=0, 3
a = 3^3/10
подставляем a:
log3(3^2 x 3^3/10)
log3(3^2,3)
ответ 2,3