arsen-ai-ti
?>

При каких значениях параметра t уравнение 16x²+t=0 имеет ровно один корень (два равных корня)?

Алгебра

Ответы

Alyona1692
D=-4t=0
t=0
ответ при t=0 уравнение имеет 1 корень
ОвсепянСергей88
2√х+√(5-х)=√(х+21). Сначала вычислим область допустимых значений.
5-х=>0 x<=5, x+21=>0 x=>-21 и x=>0. Поэтому х∈[0,5].
 Возводим в квадрат обе части уравнения.
(2√x+√(5-x))²=(√(x+21))², (2√x)²+2*2√x*√(5-x)+(√(5-x))²=(√x+21))²,
4x+4*√x*(5-x)+5-x=x+21, 4x+5-x-x-21=-4*√x*(5-x), 2x-16=-4*√x*(5-x),
x-8=-2*√x*(5-x). Возводим ещё раз обе части уравнения в квадрат.
x²-16x+64=4*x*(5-x), x²-16x+64=20x-4x², 5x²-36x+64=0, D=1296-1280=16
x1=(36+4)/10=4, x2=(36-4)/10=3,2
Итак найденные корни  х1=4, х2=3,2.
Voronina747
ax²+bx +c=a(x–x₁)(x–x₂)

2x²-3x-2=0
Д=(-3)²-4*2*(-2)=9+16=25
х₁=(3+5)/2*2=8/4=2
х₂=(3-5)/2*2=-2/4=-1/2
2x²-3x-2=2(х+1/2)(х-2)=(2х+1)(х-2)

3x²-8x-3=0
Д=(-8)²-4*3*(-3)=64+36=100
х₁=(8+10)/2*3=18/6=2
х₂=(8-10)/2*3=-2/6=-1/3
3x²-8x-3=3(х+1/3)(х-2)=(3х+1)(х-2)

3x²+2x-1=0
Д=2²-4*3*(-1)=4+12=16
х₁=(-2+4)/2*3=2/6=1/3
х₂=(-2-4)/2*3=-6/6=-1
3x²+2x-1=3(х-1/3)(х+1)=(3х-1)(х+1)

2x²+5x-3=0
Д=5²-4*2*(-3)=25+24=49
х₁=(-5+7)/2*2=2/4=1/2
х₂=(-5-7)/2*2=-12/4=-3
2x²+5x-3=2(х-1/2)(х+3)=(2х-1)(х+3)

x²-x-30=0
Д=(-1)²-4*(-30)=1+120=121
х₁=(1+11)/2=12/2=6
х₂=(1-11)/2=-10/2=-5
x²-x-30=(х-6)(х+5)

x²+x-42=0
Д=1²-4*(-42)=1+168=169
х₁=(-1+13)/2=12/2=6
х₂=(-1-13)/2=-14/2=-7
x²+x-42=(х-6)(х+7)


5x²-3x-2=0
Д=(-3)²-4*5*(-2)=9+40=49
х₁=(3+7)/2*5=10/10=1
х₂=(3-7)/2*5=-4/10=-2/5
5x²-3x-2=5(х+2/5)(х-1)=(5х+2)(х-1)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каких значениях параметра t уравнение 16x²+t=0 имеет ровно один корень (два равных корня)?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

АндреевичЮлия
iskypka
Akolomaeva4
preida-2
fakyou170
kapustina198690
Prostofil200790
Sashagleb19
galinaobraz
yorestov
marinazubcko16729
shuramuji
fokolimp
rs90603607904
mariia39