n(n+1) = 25k+1 ; рассмотрим остатки от деления числа n на 5 :
1) если n = 5m , то левая часть кратна 5 , а правая нет
2) если n = 5m+1 , то n(n+1) = (5m+1)·(5m+2) = 25m²+15m +2
25m²+15m +2 = 25k+1 или : 25m²+15m - 25k = -1 , равенство
невозможно , так как левая часть кратна 5 , а правая нет
3) если n = 5m+2, то n(n+1) = (5m+2)·(5m+3) = 25m²+25m +6 ,
25m²+25m +6 = 25k +1 или : 5m² +5m -5k = - 1 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
4) если n = 5m+3 , то n(n+1) = (5m+3)·(5m+4) = 25m² + 35m +12
25m² + 35m +12 = 25k+1 ⇒ 25m² + 35m -25k = -11 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
5) если n = 5m+4 , то n(n+1) = (5m+4)·(5m+5) = 5( m+1)(5m+4)
5( m+1)(5m+4) = 25k +1 , равенство невозможно ,
так как левая часть кратна 5 , а правая нет
n(n+1) = 25k+1 ; рассмотрим остатки от деления числа n на 5 :
1) если n = 5m , то левая часть кратна 5 , а правая нет
2) если n = 5m+1 , то n(n+1) = (5m+1)·(5m+2) = 25m²+15m +2
25m²+15m +2 = 25k+1 или : 25m²+15m - 25k = -1 , равенство
невозможно , так как левая часть кратна 5 , а правая нет
3) если n = 5m+2, то n(n+1) = (5m+2)·(5m+3) = 25m²+25m +6 ,
25m²+25m +6 = 25k +1 или : 5m² +5m -5k = - 1 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
4) если n = 5m+3 , то n(n+1) = (5m+3)·(5m+4) = 25m² + 35m +12
25m² + 35m +12 = 25k+1 ⇒ 25m² + 35m -25k = -11 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
5) если n = 5m+4 , то n(n+1) = (5m+4)·(5m+5) = 5( m+1)(5m+4)
5( m+1)(5m+4) = 25k +1 , равенство невозможно ,
так как левая часть кратна 5 , а правая нет
Поделитесь своими знаниями, ответьте на вопрос:
9.2 три поросенка ниф-ниф, наф-наф и нуф-нуф отправились навестить бабушку, которая живет в 33 км от города. у ниф-нифа есть мотороллер, скорость которого 25 км/ч, а с пассажиром – 20 км/ч (двух пассажиров на мотороллере перевозить нельзя каждый из поросят идет по дороге со скоростью 5 км/ч. докажите, что все трое могут добраться до бабушки за 3 часа. 9.3 докажите, что для любых действительных чисел a и b выполняется неравенство a^2 + ab + b^2 ≥ 3(a + b – 1). 9.4 найдите площадь треугольника abc, если его медиана ad и биссектриса be перпендикулярны и пересекаются в точке f, а площадь треугольника fed равна 5. 9.5 два игрока по очереди ставят фишки на клетки доски 2015 × 2015. правила игры таковы, что первый может ставить очередную фишку на любую свободную клетку, для которой количество фишек , уже стоящих в одном столбце и одной строке с этой клеткой, четно. второй может ставить очередную фишку на любую свободную клетку, для которой количество фишек , уже стоящих в одном столбце и одной строке с этой клеткой, нечетно. проигрывает тот , у кого нет хода. кто выиграет при правильной игре (независимо от игры противника) , и как ему играть?