Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
upd: да, всё сошлось.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В якій точці графік функції перетинає вісь абсцис y=4x-2
y=
x
- возрастающая функция ( большему значению аргумента соответствует большее значение функции, это для пунктов е) , f) и g) . )
\begin{gathered}d)\; \; A(a;3\sqrt6):\; \; 3\sqrt6=\sqrt{a}\; \to \; \; a=(3\sqrt6)^2\; ,\; \; a=9\cdot 6=54e)\; \; x\in [\, 0,9\, ]:\; \; y_1=\sqrt 0=0\; ,\; \; y_2=\sqrt9=3\; \; \Rightarrow \; \; y\in [\, 0,3\, ]f)\; \; y\in (\, 12;21\, ]:\; \; 12=\sqrt{x}\; \to \; \; x=12^2=144\; ,21=\sqrt{x}\; \to \; \; x=21^2=441\; \; \Rightarrow \; \; \; x\in [\, 144;441\, ]g)\; \; 0\leq y\leq 2\; \; (tochnee)\; \to \; \; 0\leq \sqrt{x}\leq 2\; ,\; \; 0\leq x\leq 4\end{gathered}
d)A(a;3
6
):3
6
=
a
→a=(3
6
)
2
,a=9⋅6=54
e)x∈[0,9]:y
1
=
0
=0,y
2
=
9
=3⇒y∈[0,3]
f)y∈(12;21]:12=
x
→x=12
2
=144,
21=
x
→x=21
2
=441⇒x∈[144;441]
g)0≤y≤2(tochnee)→0≤
x
≤2,0≤x≤4