1. Пусть время, за которое скорый поезд догонит пассажирский, - х ч. Пассажирский поезд в пути находится (х+2) ч, т.к. выехал на 2 часа раньше. tск=х ч tпас=(x+2) ч 2. Нам даны скорости поездов, поэтому можем найти S по формуле: S=V*t Sск=66x км Sпас=55(x+2) км 3. Поезда проходят равное расстояние, поэтому справедливо уравнение: 66x=55(x+2) 66x=55x+110 66x-55x=110 11x=110 x=10 Через 10 ч скорый поезд догонит пассажирский. Нашли время, значит можем найти расстояние, которое проедет скоростной поезд за 10 ч: Sск=66*10=660 (км) Для того чтобы найти на каком расстоянии поезда встретились необходимо: S=Sобщ-Sск=855-660=195 (км)
2. Найдем путь, который скорый поезд за 2 ч: 80*2=160 (км) Найдем путь, на котором поезда двигались одновременно: 720-160=560 (км) Скорость сближения поездов: 80+60=140 (км/ч) Время до встречи: 560/140=4 (ч)
3. Найдем время за которое самолеты вместе пролетели все расстояние: 11-8=3 (ч) 1. Мы знаем V1 и t1. Находим S1=620*3=1860 (км) 2. S2=3540-1860=1680 3. Теперь знаем S2 и t2. Находим V2=1680/3=560 (км/ч)
belka1976
03.05.2023
(1) Основное тригонометрическое тождествоsin2(α) + cos2(α) = 1(2) Основное тождество через тангенс и косинус1 + tg^2(\alpha) = \frac{1}{cos^2(\alpha)}1+tg2(α)=cos2(α)1(3) Основное тождество через котангенс и синус1 + ctg^2(\alpha) = \frac{1}{sin^2(\alpha)}1+ctg2(α)=sin2(α)1(4) Соотношение между тангенсом и котангенсомtg(α)ctg(α) = 1(5) Синус двойного углаsin(2α) = 2sin(α)cos(α)(6) Косинус двойного углаcos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)(7) Тангенс двойного углаtg(2α) = 2tg(α)1 – tg2(α)(8) Котангенс двойного углаctg(2α) =ctg2(α) – 1 2ctg(α)(9) Синус тройного углаsin(3α) = 3sin(α)cos2(α) – sin3(α)(10) Косинус тройного углаcos(3α) = cos3(α) – 3cos(α)sin2(α)(11) Косинус суммы/разностиcos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)(12) Синус суммы/разностиsin(α±β) = sin(α)cos(β) ± cos(α)sin(β)(13) Тангенс суммы/разностиtg(\alpha\pm\beta) = \frac{tg(\alpha) ~ \pm ~ tg(\beta)}{1 ~ \mp ~ tg(\alpha)tg(\beta)}tg(α±β)=1 ∓ tg(α)tg(β)tg(α) ± tg(β)(14) Котангенс суммы/разностиctg(\alpha\pm\beta) = \frac{-1 ~ \pm ~ ctg(\alpha)ctg(\beta)}{ctg(\alpha) ~ \pm ~ ctg(\beta)}ctg(α±β)=ctg(α) ± ctg(β)−1 ± ctg(α)ctg(β)(15) Произведение синусовsin(α)sin(β) = ½(cos(α–β) – cos(α+β))(16) Произведение косинусовcos(α)cos(β) = ½(cos(α+β) + cos(α–β))(17) Произведение синуса на косинусsin(α)cos(β) = ½(sin(α+β) + sin(α–β))(18) Сумма/разность синусовsin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))(19) Сумма косинусовcos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))(20) Разность косинусовcos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))(21) Сумма/разность тангенсовtg(\alpha) \pm tg(\beta) = \frac{sin(\alpha\pm\beta)}{cos(\alpha)cos(\beta)}tg(α)±tg(β)=cos(α)cos(β)sin(α±β)(22) Формула понижения степени синусаsin2(α) = ½(1 – cos(2α))(23) Формула понижения степени косинусаcos2(α) = ½(1 + cos(2α))(24) Сумма/разность синуса и косинусаsin(\alpha) \pm cos(\alpha) = \sqrt{2}sin(\alpha\pm\frac{\pi}{4})sin(α)±cos(α)=√2sin(α±4π)(25) Сумма/разность синуса и косинуса с коэффициентамиAsin(\alpha) \pm Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha \pm arccos(\frac{A}{\sqrt{A^2+B^2}})))Asin(α)±Bcos(α)=√A2+B2(sin(α±arccos()))(26) Основное соотношение арксинуса и арккосинусаarcsin(x) + arccos(x) = π/2(27) Основное соотношение арктангенса и арккотангенсаarctg(x) + arcctg(x) = π/2
Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sinn(α)=2nC2nn+2n−11∑k=02n−1(−1)2n−kCkncos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cosn(α)=2nC2nn+2n−11∑k=02n−1Ckncos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sinn(α)=2n−11∑k=02n−1(−1)2n−1−kCknsin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cosn(α)=2n−11∑k=02n−1Ckncos((n−2k)α)
б) у=2/3х
в)у=2х
г)у=1/2х