Пусть скорость движения моторной лодки x км/ч. Тогда скорость движения лодки по течению реки равна (x+2) км/ч, а против течения (x-2) км/ч. Время движения лодки по течению реки равно 10/x+2 ч. , а против течения 8/x-3 ч. На весь путь лодка затратила времени 10/x+2 + 8/x-2 ч. По условию это равно 1 ч. Составим и решим уравнение. 10/x+2 + 8/x-2 =1 10x-20+8x+16/(x+2)(x-2)=1 18x-4=1 18x=4 x=4/18 x=4,5 Скорость движения моторной лодки 4,5 км/ч. 1) 4,5-2=2,5 (км/ч) - скорость лодки против течения ответ: скорость моторной лодки против течения равна 2,5 км/ч.
Petrushin482
01.10.2021
1) 3х²-14х+15≤0 3х²-14х+15=0 D=14²-4·3·15=196-180=16 x1=3 x2=5\3 3(x-3)(x-5\3)≤0 На числовой прямой отметьте точки х=3 и х=1.2\3 (полные, закрашенные), так как неравенство не строгое).Прямая разбивается на 3 промежутка (-∞;5\3) (5\3;3) и (3;∞).Для того что бы определить знаки , подставим любые числа из промежутка в не равенство и получим : х∈[5\3 ; 3], скобки квадратные , т.е. значения 5\3 и 3 входят в промежуток 2)х²+6х-16<0 x²+6x-16=0 D=6²-4·(-16)=36+64=100 x1=2 x2=-8 (x-2)(x+8)<0 На числовой прямой отметить точки 2 и (-8) пустые , так как строгое неравенство. Наш ответ х∈(-8;2) 3)4х²+9х-9≥0 4х²+9х-9=0 D=81-4·4·(-9)=81+144=225 x1=3\4 x2=-3 на числовой прямой отметим точки (-8)и 3\4 полные , закрашенные. Парабола 4х²+9х-9 расположена ветвями вверх , т.к. а=4>0. Наш ответ: х∈(-∞;-3)и(3\4;∞)