anton-www1
?>

Бассейн наполняется водой за 3 часов, а опорожняется за 12 часов. в результате ошибки в бассейн одновременно наливалась и выливалась вода. за какое время таким образом наполнится бассейн? и сколько часов будет тратиться не целесообразно.

Алгебра

Ответы

serov555zaq5
Бассейн наполняется в 4 раза быстрее, чем опорожняется.
то есть то, что из бассейна выливается вода уменьшает его скорость напрлнения на 1/4, остается 3/4 скорости наполнения. 3/(3/4)=4 часа. Получается, что один час будет тратиться не целесообразно.

Можно решить эту задачу другим
Пусть V - объем бассейна, x - скорость наполнения, y - скорость опрожнения.
V:x=3
V:y=12
Откуда плучаем
V=3x
V=12y
3x=12y
x=4y
y=x/4
Скорость наполнения бассейна при включенной сливной трубе будет
x-y=x-x/4=3x/4
Тогда время на заполнени бассейна будет
\frac{V}{x-y}= \frac{V}{ \frac{3x}{4} }= \frac{4V}{3x}=\frac{4}{3}\frac{V}{x}=\frac{4}{3}*3=4
4 часа
4-3=1  -один час будет тратиться не целесообразно.
iordanekaterina

Правая часть уравнения должна быть неотрицательной:

sin2x \geq 0

2\pi k \leq 2x \leq \pi+2\pi k;k \in Z

\pi k \leq x \leq \frac{\pi}{2}+\pi k;k \in Z

То есть первая и третья четверти,где синус и косинус одного знака.

Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)

Рассмотрим выражение под модулем:

cosx+sinx

Попробуем найти максимум такой функции

cos^2x+sin^2x=1

cos^2x+2sinxcosx+sin^2x=1+2sinxcosx

(cosx+sinx)^2=1+sin2x

Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.

Правая часть принимает наибольшее значение при

sin2x=1

x=\frac{\pi}{4}+\pi k,k \in Z

max|cosx+sinx|=\sqrt{2}

max(\sqrt{2}sin2x})=\sqrt{2}

Разделим обе части уравнения на \sqrt{2}

|\frac{\sqrt{2}}{2}cosx+\frac{\sqrt{2}}{2}sinx|=sin2x

|sin(x+\frac{\pi}{4})|=sin2x

Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.

Рассмотрим аргументы обоих синусов на полуинтервале:

x \in [0;\frac{\pi}{4})

x+\frac{\pi}{4}x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Рассмотрим аргументы обоих синусов на полуинтервале:

На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.

x \in (\frac{\pi}{4};\frac{\pi}{2}]

x+\frac{\pi}{4}<x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Очевидно,что единственным решением уравнения является:

x=\frac{\pi}{4}+\pi k,k \in Z

 

 

 

goldglobustour725

Правая часть уравнения должна быть неотрицательной:

sin2x \geq 0

2\pi k \leq 2x \leq \pi+2\pi k;k \in Z

\pi k \leq x \leq \frac{\pi}{2}+\pi k;k \in Z

То есть первая и третья четверти,где синус и косинус одного знака.

Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)

Рассмотрим выражение под модулем:

cosx+sinx

Попробуем найти максимум такой функции

cos^2x+sin^2x=1

cos^2x+2sinxcosx+sin^2x=1+2sinxcosx

(cosx+sinx)^2=1+sin2x

Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.

Правая часть принимает наибольшее значение при

sin2x=1

x=\frac{\pi}{4}+\pi k,k \in Z

max|cosx+sinx|=\sqrt{2}

max(\sqrt{2}sin2x})=\sqrt{2}

Разделим обе части уравнения на \sqrt{2}

|\frac{\sqrt{2}}{2}cosx+\frac{\sqrt{2}}{2}sinx|=sin2x

|sin(x+\frac{\pi}{4})|=sin2x

Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.

Рассмотрим аргументы обоих синусов на полуинтервале:

x \in [0;\frac{\pi}{4})

x+\frac{\pi}{4}x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Рассмотрим аргументы обоих синусов на полуинтервале:

На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.

x \in (\frac{\pi}{4};\frac{\pi}{2}]

x+\frac{\pi}{4}<x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Очевидно,что единственным решением уравнения является:

x=\frac{\pi}{4}+\pi k,k \in Z

 

 

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Бассейн наполняется водой за 3 часов, а опорожняется за 12 часов. в результате ошибки в бассейн одновременно наливалась и выливалась вода. за какое время таким образом наполнится бассейн? и сколько часов будет тратиться не целесообразно.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tanyaandreeva728
Bolshakova Shigorina
svetrusval
marani2
annapiskun1
Takhmina-Komarova1415
Alekseevna1064
is926582086060
okykovtun31
denisdenisov63
Виталий
Yevgenii_Gurtovaya1532
zrs-546
tarasova
Щуплова Александр