поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
Объяснение:
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
4x2−3x+1=0 ;
a=4 ;
b=−3 ;
c=1 .
Корни квадратного уравнения вычисляют по формулам:
x1 = −b+D−−√2⋅a ; x2 = −b−D−−√2⋅a , где D= b2−4ac .
D называется дискриминантом.
По значению дискриминанта можно определить количество корней квадратного уравнения.
Если D<0 (отрицательный), то у уравнения нет действительных корней.
Если D=0 , то у уравнения два равных корня.
Если D>0 (положительный), то у уравнения два различных корня.
Приведённое квадратное уравнение (коэффициент при x2 равен 1 , т. е. а=1 )
x2+bx+c=0 можно решить с теоремы Виета: {x1⋅x2=cx1+x2=−b
Неполные квадратные уравнения
Неполные квадратные уравнения имеют 2 вида:
1. если c=0 , то ax2+bx=0 ;
2. если b=0 , то ax2+c=0 .
Неполные квадратные уравнения можно решать с формул дискриминанта, но рациональнее выбрать специальные
1. ax2+bx=0 можно решить, разложив на множители (вынести за скобку x )
x⋅(ax+b)=0 .
x=0 или ax+b=0 . Значит, один корень равен 0 , а второй корень x=−ba
(т. к. произведение двух чисел равно 0 только тогда, когда хотя бы один из множителей равен 0 ).
2x2−30x=0;x(2x−30)=0;x=0,или2x−30=0;2x=30;x=15.
ответ: x=0 ; x=15 .
2. ax2+c=0 можно решить, извлекая корень из каждой части уравнения.
ax2=−c ; (обе стороны делятся на a ) x2=−ca .
|x|= −ca−−−√ . Извлекая корень из правой части уравнения, получаем x по модулю.
Это значит, что
x1 = −ca−−−√ ;
x2 = −−ca−−−√ .
4x2−100=0;4x2=100∣∣:4x2=25;|x|=25−−√;
из этого следует, что x=5 или x=−5 .
ответ: x1=5 ; x2=−5 .
x2+36=0;x2=−36.
У уравнения нет решения, т. к. квадратный корень из отрицательного числа не имеет смысла (также известно, что число во второй степени не может быть отрицательным).
ответ: корней нет.
Поделитесь своими знаниями, ответьте на вопрос:
Выражение ( x+2)(x^2+4)-x (x-3)(x+3)