условно сходится
Объяснение:
Для выяснения сходимости ряда используем признак Лейбница.
Очевидно, что
1. , так как с увеличением номера n увеличивается знаменатель, а с ростом знаменателя дробь становится все меньше и меньше;
2.
Надеюсь, данный факт ясен.
Два условия выполнены, следовательно, ряд по признаку Лейбница сходится.
Выясним вопрос относительно абсолютной сходимости. Для этого нужно рассмотреть соответствующий ряд из модулей исходного ряда.
Напомню, что модуль "съедает" множитель вида . Значит, общий член нового ряда имеет вид .
Для установления сходимости данного ряда используем интегральный признак Коши. Это можно сделать, поскольку действительнозначная функция
неотрицательна, непрерывна и убывает на интервале
Можно рассмотреть несобственный интеграл. Исследуем его на сходимость. подробности в приложенном файле.
Итак, получена бесконечность, стало быть, несобственный интеграл расходится.
Ряд сходится либо расходится вместе с несобственным интегралом. То есть, расходится.
Таким образом, сам ряд сходится. Но ряд из модулей расходится, что исключает абсолютную сходимость ряда. А сходящийся ряд, не сходящийся абсолютно, сходится условно.
Объяснение:
Функция задана формулой y = 2x - 5. Определите:
1) значение функции, если значение аргумента равно -2;
2) значение аргумента, при котором значение функции равно 13;
3) проходит ли график функции через точку А(-1; -7).
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x − 5
Таблица:
х -1 0 1
у -7 -5 -3
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х= -2
у=2*(-2)-5= -9 у= -9 при х= -2
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у=13
13=2х-5
-2х= -5-13
-2х= -18
х=9 у=13 при х=9
3)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(-1; -7)
y = 2x − 5
-7=2*(-1)-5
-7= -2-5
-7= -7, проходит.
2. Постройте график функции y = 2x+ 1. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 1;
2) значение аргумента, при котором значение функции равно -3.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x+ 1
Таблица:
х -1 0 1
у -1 1 3
а)согласно графика при х=1 у=3
б)согласно графика при у= -3 при х= -2
3. Не выполняя построения, найдите координаты точек пересечения графика функции
y = -2x+ 6 с осями координат.
а)График пересекает ось Оу при х=0.
у= -2*0+6=6
Координаты точки пересечения графиком оси Оу (6; 0)
б)График пересекает ось Ох при у=0.
0= -2х+6
2х=6
х=3
Координаты точки пересечения графиком оси Ох (3; 0)
4. При каком значении k график функции y = kx + 4 проходит через точку А(-3; -17)?
Нужно подставить известные значения х и у (координаты точки А) в уравнение и вычислить k:
y = kx + 4
-17=k*(-3)+4
-17= -3k+4
3k=4+17
3k=21
k=7
Поделитесь своими знаниями, ответьте на вопрос:
Выражение у2\х-у(1\у-1\х) и найдите его значение при х=1, 1, у=121
у/х = 121/1,1 = 110